A World Bank Quarterly Report

# JULY 2016

# Commodity Markets Outlook

From energy prices to food prices: Moving in tandem?





A World Bank Quarterly Report

JULY 2016

# Commodity Markets Outlook



© 2016 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org

#### Some rights reserved

This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The maps were produced by the Map Design Unit of The World Bank. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on these maps do not imply, on the part of The World Bank Group, any judgment on the legal status of any territory, or any endorsement or acceptance of such boundaries.

Nothing herein shall constitute or be considered to be a limitation upon or waiver of the privileges and immunities of The World Bank, all of which are specifically reserved.

#### **Rights and Permissions**



Attribution—Please cite the work as follows: World Bank Group. 2016. *Commodity Markets Outlook*, July. World Bank, Washington, DC. License: Creative Commons Attribution CC BY 3.0 IGO

**Translations**—If you create a translation of this work, please add the following disclaimer along with the attribution: This translation was not created by The World Bank and should not be considered an official World Bank translation. The World Bank shall not be liable for any content or error in this translation.

**Adaptations**—If you create an adaptation of this work, please add the following disclaimer along with the attribution: This is an adaptation of an original work by The World Bank. Views and opinions expressed in the adaptation are the sole responsibility of the author or authors of the adaptation and are not endorsed by The World Bank.

**Third-party content**—The World Bank does not necessarily own each component of the content contained within the work. The World Bank therefore does not warrant that the use of any third-party-owned individual component or part contained in the work will not infringe on the rights of those third parties. The risk of claims resulting from such infringement rests solely with you. If you wish to re-use a component of the work, it is your responsibility to determine whether permission is needed for that re-use and to obtain permission from the copyright owner. Examples of components can include, but are not limited to, tables, figures, or images.

All queries on rights and licenses should be addressed to the Publishing and Knowledge Division, The World Bank, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2625; e-mail: pubrights@worldbank.org.

The cutoff date for the data used in this report was July 22, 2016.

# Contents

| Acknowledgments                                                     |
|---------------------------------------------------------------------|
| Executive Summary1                                                  |
| Special Focus: From energy prices to food prices: Moving in tandem? |
| Commodity Market Developments and Outlook                           |

| Energy                                                      | 13 |
|-------------------------------------------------------------|----|
| Agriculture                                                 | 17 |
| Fertilizers                                                 | 21 |
| Metals and minerals                                         | 22 |
| Precious metals                                             | 24 |
| Appendix A: Historical commodity prices and price forecasts | 25 |
| Appendix B: Supply-Demand Balances                          | 33 |
| Appendix C: Description of price series                     | 55 |

# Figures

| 1  | Commodity price indexes, monthly1          |
|----|--------------------------------------------|
| 2  | Commodity price indexes, annual1           |
| F1 | Energy and agriculture price indexes       |
| F2 | The energy-biofuel-food price link         |
| F3 | Cost of energy component                   |
| F4 | Global biofuels production                 |
| F5 | Global stock-to-use ratios                 |
| F6 | Contribution to explained price variation7 |
| 3  | Crude oil prices                           |
| 4  | World oil demand growth                    |
| 5  | U.S. crude oil production                  |
| 6  | U.S. oil rig count and oil prices          |
| 7  | OPEC crude oil production15                |
| 8  | OECD crude oil stocks                      |
| 9  | Coal consumption                           |
| 10 | Coal and natural gas prices                |
| 11 | Agriculture price indexes                  |
| 12 | Agriculture price indexes, change17        |
| 13 | Global grain supplies                      |

| 14 | Global production of key edible oils |
|----|--------------------------------------|
| 15 | China's stocks of key commodities19  |
| 16 | Global stock-to-use ratios           |
| 17 | Coffee prices                        |
| 18 | Cotton stocks                        |
| 19 | Fertilizer prices                    |
| 20 | Global fertilizer consumption        |
| 21 | Metal and mineral prices             |
| 22 | World refined metal consumption22    |
| 23 | World metal consumption growth23     |
| 24 | Zinc price and LME stocks            |
| 25 | Precious metal prices                |
| 26 | Global silver production             |

## Tables

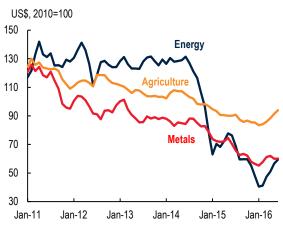
| 1  | Nominal price indexes (actual and forecasts) and forecast revisions | 2 |
|----|---------------------------------------------------------------------|---|
| F1 | Parameter estimates                                                 | ) |

# Acknowledgments

This World Bank Group Report is a product of the Prospects Group in the Development Economics Vice Presidency. The report was managed by John Baffes under the general guidance of Ayhan Kose and Franziska Ohnsorge.

Many people contributed to the report. John Baffes authored the section on agriculture and the Special Focus on the implications of lower energy prices for food prices. Shane Streifel authored the sections on energy, fertilizers, metals, and precious metals. Xinghao Gong managed the report's database. Xiaoli Etienne assisted with the econometric estimation for the Special Focus. The design and production of the report was managed by Maria Hazel Macadangdang and Adriana Maximiliano. Carlos Arteta, Christian Eigen-Zucchi, Mark Felsenthal, Yirbehogre Modeste Some, and Dana Vorisek provided extensive editorial comments. Poonam Gupta and Betty Dow reviewed the report. Indira Chand, Mark Felsenthal, and Mikael Reventar managed the media relations and dissemination. The accompanying website was produced by Graeme Littler.

The World Bank's *Commodity Markets Outlook* is published quarterly, in January, April, July, and October. The report provides detailed market analysis for major commodity groups, including energy, agriculture, fertilizers, metals, and precious metals. A *Special Focus* section examines current topics and issues in commodity markets. Price forecasts to 2025 for 46 commodities are presented, together with historical price data. The report also contains production, consumption, and trade statistics for major commodities. Commodity price data updates are published separately at the beginning of each month.


The report and data can be accessed at: www.worldbank.org/commodities

For inquiries and correspondence, email at: commodities@worldbank.org

# Executive Summary

Most commodity price indexes rebounded in the second quarter of 2016, continuing their upward climb from January lows on improved market sentiment and tapering supplies. Oil prices jumped by more than a third due to supply outages and strong demand. Given this rebound and expected reduction in inventories during the second half of the year, the crude oil price forecast for 2016 is being raised to \$43 per barrel (bbl) from \$41/bbl in the April assessment, still a 15 percent drop from 2015. Metals prices are projected to decline 11 percent in 2016, a slightly larger drop than anticipated in April, mainly driven by an ongoing surplus in the copper market. Agricultural prices for 2016 have been revised slightly upwards due to weather patterns in South America, but are still expected to register a marginal decline from last year. A large upward revision for precious metal prices of more than 8 percentage points versus the April assessment reflects the increased demand for safe haven assets. For 2017, a modest recovery is projected for most commodities as demand strengthens and supply tightens. This issue of the Commodity Markets Outlook examines the implications of low energy prices for food prices. It finds that, given the energy-intensive nature of agriculture, high energy prices were an important driver of the post-2006 surge in agricultural prices. Over 2011-16, lower energy prices are estimated to account for up to one-third of the projected 32 percent decline in prices of grains and soybeans.

Trends. Energy prices leapt almost 30 percent in the second quarter of 2016 (Figure 1). Oil prices averaged \$47.70/bbl in June, 37 percent above their first quarter average. The oil price rebound reflects a number of supply disruptions that removed up to 2.5 million barrels per day (mb/d) of production at peak during May and June, with large losses concentrated in Canada due to wildfires, and in Nigeria due to militant attacks on oil infrastructure. In addition, there were disruptions in other countries, including Kuwait, Iraq, and Libya. Declines in non-OPEC production, led by the United States, were partly offset by higher OPEC production, mainly from Iran. Global oil demand remained strong, albeit slowing. In contrast, natural gas prices were down 5 percent in the second quarter, particularly in Europe and Asia, due to weak demand and surplus supplies of liquefied natural gas (LNG). However, U.S. gas prices rose from their lows in March on stronger demand and higher exports. Coal prices rose 2 percent on tightening supply and strong demand in China.



#### Commodity price indexes, monthly

#### 2 Commodity price indexes, annual

Non-energy commodity prices rose 7 percent in the

second quarter, led by agriculture, which was up 8

percent. Gains were concentrated in oils and meals (up 17 percent) due to poor harvests in South Amer-

ica (some grains and soybeans) and East Asia (palm oil). Other food commodity prices rose moderately.

Metals prices rose 5 percent in the second quarter,

with gains concentrated in iron ore, zinc and tin on

production cuts and stronger demand. Precious met-

als prices rose 8 percent due to strong investor de-

mand prompted by anticipation of delays in the nor-

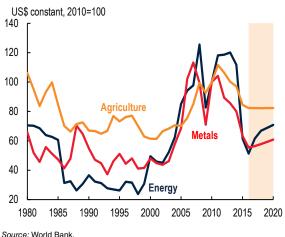
malization of monetary policy in the United States

and growing concerns about global growth. Fertilizer

prices fell almost 7 percent amid weak demand and

Outlook and risks. All main commodity price indexes

(except food and precious metals) are expected to de-


cline in 2016 (Figure 2) due to large supplies and, in

the case of industrial commodities, weak growth pros-

pects in emerging market and developing economies

(EMDEs). However, the annual decline in prices is

surplus production capacity.



Note: Shaded area denotes price forecast (2016-20).

Source: World Bank. Note: Last observation is June 2016

smaller than forecast in the April 2016 *Commodity Markets Outlook* (Table 1). Energy prices are expected to fall 16 percent, with average oil prices projected at \$43/bbl in 2016 (compared with \$41/bbl in the April assessment). This implies marginally higher prices for the second half of 2016, as the oversupply in the oil market diminishes. Downside risks to the energy price forecast include higher-than-expected output and further weakening in EMDE growth. Supply disruptions among key producers could lead to higher prices.

Non-energy commodity prices are expected to drop 4 percent in 2016, 1 percentage point less than forecast in the April assessment. Agricultural prices have been revised up 2 percentage points, but are still projected to average marginally lower in 2016 than in 2015. The outlook reflects adequate supplies for most commodities but also takes into account reduced harvests in South America (especially Brazil) due to dry weather conditions. Agricultural commodity prices are also expected to be dampened by lower energy costs and plateauing demand for biofuels. Although the food price index is expected to grow only moderately next year, there is considerable dispersion among its key components: Grains and beverages are both projected to fall 4 percent and raw materials by 2 percent, while oils and meals are expected to increase 3 percent. Upside risks to agricultural price forecasts include the likely intensification of La Niña (unusually cold weather in the equatorial Eastern Central Pacific Ocean), which could affect some food commodities, such as maize in the United States and wheat in Australia. Downside price risks reflect increased agricultural subsidies, which would encourage greater supply of food commodities. Fertilizer prices are projected to retreat 18 percent in 2016 due to surplus capacity, weak demand, and low natural gas prices, used as feedstock to the production of some fertilizers.

Metals prices are projected to decline 11 percent in 2016, which follows last year's 21 percent drop, due to weak demand prospects and new capacity coming on line. The largest declines are for nickel and copper, amid surplus supply, while the zinc market is expected to tighten with the closure of large mines. Downside price risks for non-energy industrial commodities include further slowdown in China and currency depreciations in key suppliers. Precious metals prices are projected to rise 8 percent in 2016 on stronger safehaven buying and deepening concerns about global growth prospects.

*Special Focus on the implications of low energy prices for food prices.* Energy prices declined 45 percent in 2015 and are projected to drop another 16 percent in 2016. Since agriculture is energy intensive, lower energy prices reduce the cost of producing food commodities. Lower energy prices can ease policy pressures to encourage production of biofuels, which have been a key factor behind the growth of food commodity demand over the past decade. Indeed, energy prices were an important driver of the post-2006 surge in agricultural prices. During 2011-16, energy price changes are estimated to contribute about one-third to the projected 32 percent decline of grain commodities and soybeans prices.

|                              |       | Pri   | ce Indexe | es (2010= | Chang              | ge (%)             | Revision <sup>2</sup> |             |       |       |
|------------------------------|-------|-------|-----------|-----------|--------------------|--------------------|-----------------------|-------------|-------|-------|
|                              | 2012  | 2013  | 2014      | 2015      | 2016f <sup>1</sup> | 2017f <sup>1</sup> | 2015-16               | 2016-17     | 2016f | 2017f |
| Energy                       | 128   | 127   | 118       | 65        | 54                 | 66                 | -16.4                 | 22.2        | 1.9   | 3.4   |
| Non-Energy <sup>3</sup>      | 110   | 102   | 97        | 82        | 79                 | 81                 | -4.1                  | 2.1         | 0.8   | 0.7   |
| Agriculture                  | 114   | 106   | 103       | 89        | 89                 | 90                 | -0.7                  | 1.5         | 2.4   | 2.2   |
| Beverages                    | 93    | 83    | 102       | 94        | 90                 | 89                 | -4.2                  | -0.3        | 0.4   | 0.5   |
| Food                         | 124   | 116   | 107       | 91        | 91                 | 93                 | 0.4                   | 1.6         | 3.4   | 3.1   |
| Oils and meals               | 126   | 116   | 109       | 85        | 87                 | 89                 | 2.7                   | 2.3         | 5.2   | 4.8   |
| Grains                       | 141   | 128   | 104       | 89        | 86                 | 88                 | -3.7                  | 2.6         | 1.4   | 1.3   |
| Other food                   | 107   | 104   | 108       | 100       | 101                | 101                | 1.0                   | 0.2         | 2.9   | 2.7   |
| Raw Materials                | 101   | 95    | 92        | 83        | 82                 | 84                 | -1.7                  | 2.3         | 1.1   | 1.0   |
| Fertilizers                  | 138   | 114   | 100       | 95        | 78                 | 80                 | -18.0                 | 2.0         | -4.6  | -4.2  |
| Metals and Minerals          | 96    | 91    | 85        | 67        | 60                 | 62                 | -11.0                 | 3.6         | -1.8  | -2.0  |
| Precious Metals <sup>3</sup> | 138   | 115   | 101       | 91        | 97                 | 95                 | 7.5                   | -2.0        | 8.3   | 7.3   |
| Memorandum items             |       |       |           |           | ·                  |                    |                       | · · · · · · |       |       |
| Crude oil (\$/bbl)           | 105   | 104   | 96        | 51        | 43                 | 53                 | -15.2                 | 23.7        | 2.0   | 3.2   |
| Gold (\$/toz)                | 1,670 | 1,411 | 1,266     | 1,161     | 1,250              | 1,219              | 7.7                   | -2.4        | 100.0 | 87.1  |

TABLE 1 Nominal price indexes (actual and forecasts) and forecast revisions

Source: World Bank.

Notes: (1) "f" denotes forecasts. (2) Denotes revision to the forecasts from the April 2016 report (expressed as change in index value except for \$/bbl for crude oil, and \$/ toz for gold). (3) The non-energy price index excludes precious metals. See Appendix C for definitions of prices and indexes.



# **SPECIAL FOCUS:**

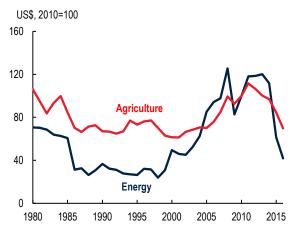
From energy prices to food prices: Moving in tandem?

# From energy prices to food prices: Moving in tandem?

Energy prices declined 45 percent in 2015 and are projected to drop another 16 percent in 2016. Given the energy intensive nature of agriculture, lower energy prices will help reduce the cost of producing food commodities. They will also ease policy pressures to encourage production of biofuels, which have been a key factor behind the growth of food commodity demand over the past decade. During 2011-16, they are likely to account for up to one-third of the projected 32 percent price decline of grain commodities and soybeans.

#### Introduction

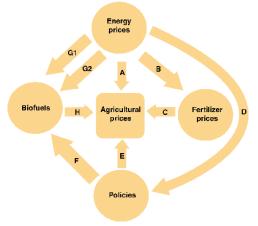
In 2016, food commodity prices are expected to average 26 percent below their 2011 highs (Figure F1). The decline in food prices has been due to a range of factors. Key among them have been falling energy prices, which are an important cost component of food production, and improved overall crop conditions, which are due to a robust supply response induced by large investment during the 2000s. Given the energy-intensive nature of agricultural production, the post-2014 weakness in energy prices is expected to continue to weigh on food prices.


Against this background, this *Special Focus* discusses the following three questions: (1) Through which channels do energy prices affect food commodity prices? (2) What are the major factors driving food prices? (3) Which factors mattered most during the post-2000 price cycle?

#### Through which channels do energy prices affect food commodity prices?

Energy prices affect food commodity prices through two main channels (Figure F2). First, fuel is a key cost component of producing and transporting food commodities (link A). Energy constitutes more than 10 percent of the cost of agricultural production—four to five times the energy intensity of manufacturing production (Figure F3). Furthermore, some chemicals and fertilizers that are by-products of crude oil or made from natural gas are also another large cost component (link B/C in Figure 2).

Second, energy price changes affect commercial incentives and policy support for biofuels use, which is partly driven by an objective to reduce dependence on imported crude oil. The diversion of some food commodities to the production of biofuels is an important driver of food commodity demand (link D/F in Figure F2).<sup>1</sup> During the past decade, biofuels constituted the largest source of growth in demand for grains and oilseeds. Currently, biofuels account for about three percent of global area allocated to grains and oilseeds and contribute the equivalent of 1.5 million barrels per day (1.6 percent) to global liquid energy consumption (Figure F4). Most biofuel production comes from maize-based ethanol in the United States and accounts for 49 percent of global biofuel production.<sup>2</sup> Sugar-based ethanol from Brazil accounts for 20 percent of the total, while edible oil-based biodiesel and ethanol in the European Union account for 15 percent (Brazil was the world's dominant biofuel producer until 2000). The remainder is produced by a





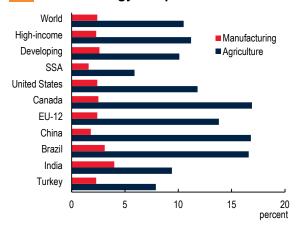

Source: World Bank

*Note:* Definitions and compositions of price indexes can be found in Appendix A and C. Last observation is 2016 and represents forecast as of July 2016.

#### F2 The energy-biofuel-food price link



Source: Baffes (2013)


Notes: A—fuel channel; B/C—Fertilizer channel; D/F—policy-induced biofuel channel; E—other energy policies; G1—profitable biofuel channel due to high oil prices; G2—profitable biofuel channel due to induced innovation in biofuel technology. number of smaller contributors, including Canada, China, and Thailand.

Based on data prior to the rise of biofuels, numerous studies have estimated the transmission elasticity of energy to non-energy prices, including food prices. The elasticities have been estimated to range from 0.11 to 0.16 (Borensztein and Reinhart 1994; Gilbert 1989; Baffes 2007). Food commodity prices (and agricultural prices more broadly) are more sensitive to energy prices than other non-energy prices, with average elasticity estimates ranging from 0.18 to 0.25 (Baffes 2007; Chaudhuri 2001; Gilbert 1989). For the United States, several authors have documented a sizable pass-through of oil price changes to agricultural producer prices as well (Hanson et al. 1993; Moss et al. 2010).

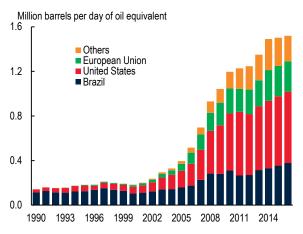
The more recent literature, which examines the energy/non-energy price link by also taking into account the biofuel channel, finds more tenuous links between energy and non-energy commodity prices (Saghaian 2010; Gilbert 2010; Zhang et al. 2010; Reboredo 2012). The mixed evidence could reflect different data frequencies (Zilberman et al. 2013) or the mandated nature of biofuels (De Gorter and Just 2008). For example, a technology-driven decline in oil prices would increase demand for oil and, because of the mandated nature of biofuel policies, would also increase demand (and hence the price) of ethanol.

#### What are the major factors driving food prices?

A reduced-form econometric model is estimated to identify the major drivers of the prices of agricultural commodities that, together, account for the largest part of world arable land: maize, soybeans, wheat, rice, palm oil, and cotton. The model incorporates the



F3 Cost of energy component


Note: SSA = Sub-Saharan Africa. The energy intensity reflects the energy cost component of agriculture and manufacturing industries and accounts for both direct and indirect use of energy. five main drivers of real agricultural prices (deflated by manufacturing prices): oil prices and exchange rates as cost components; GDP and interest rates as proxies for demand and monetary conditions; and stock-to-use ratios as proxies of crop conditions and biofuel policies. Implicitly, the stock-to-use ratio accounts for the diversion of food commodities to the production of biofuels (see Technical Appendix for model description and elasticity estimates).

*Impact of oil prices.* The estimated elasticities on oil prices are significantly different from zero for all food prices with an average (panel regression) estimate of 0.19. That is, a 10 percent increase in oil prices is associated with almost 2 percent increase in food prices. These elasticities are consistent with the literature which examined the effect of energy prices on the prices of food commodities based on data before the biofuel boom.

*Impact of crop conditions and biofuel policies.* The stock-to-use ratio, a measure of how well-supplied food markets are relative to demand (including biofuels), is also an important contributor to food price variability (Figure F5). Typically, low stocks-to-use ratios exert upward pressure on the prices of storable commodities, as was the case in the early stages of the price boom (conversely, the relatively high stocks of the past few years reduced such pressure.) The elasticity of real food prices to the stock-to-use ratio is estimated at -0.33. That is, a 10 percentage point increase in the stock-to-use ratio is associated with a 3.3 percent decline in food prices, similar to findings reported elsewhere (Bobenrieth et al. 2012, FAO 2008).

*Impact of monetary conditions.* The estimated impact of interest rates on food prices is either statistically insignificant (maize) or small (wheat, rice, soybeans, palm oil, cotton). This weak evidence is a common

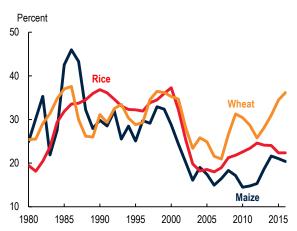
#### F4 Global biofuels production



Sources: BP Statistical Review and World Bank. Note: Last observation is 2016.

Source: World Bank calculations based on the GTAP database.

SPECIAL FOCUS 7


finding in the empirical literature (Frankel and Rose 2010; Frankel 2014; Anzuini et al. 2010, Akram 2009).<sup>3</sup>

*Impact of dollar appreciation.* When the U.S. dollar appreciates (as it did over the past two years), the value of other assets that are evaluated against the U.S. dollar—including commodities—tends to decline. Over the medium-term, U.S. dollar appreciation raises commodity prices in domestic currency terms and leads to supply increases from non-U.S. dollar exporters and demand cuts from non-U.S. dollar importers (Radetzki 1985). On average, a 10 percent appreciation of the U.S. dollar is associated with a 5 percent decline in food commodity prices. The inverse relationship between the U.S. dollar and commodity prices is empirically well-established (Lamm 1980; Gardner 1981; Baffes and Dennis 2015 for agriculture; Gilbert 1989; Akram 2009 for metals).

*Impact of GDP.* As GDP rises, food consumption grows more slowly than consumption of other goods and services (Engel's Law, Engel 1857). This results in declining food prices relative to manufactured goods prices (the Prebisch-Singer hypothesis; Prebisch 1950; Singer 1950). A 10 percent increase in real GDP is associated with a 6 percent decline in real food prices.<sup>4</sup>

# Which factors mattered most during the post-2000 price cycle?

The above elasticities combined with actual movements of the fundamental drivers of food prices provide a guide to the main reasons for the post-2011 weakness in food prices. Real prices of the three key grains—maize, wheat, and rice—and soybeans are expected to average 43, 42, 25, and 23 percent, respectively, lower in 2016 compared to their 2011 highs.<sup>5</sup> About one-third of this decline can be explained by



#### F5 Global stock-to-use ratios

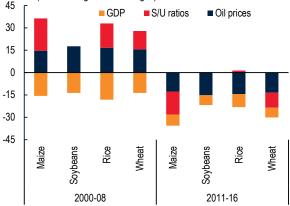
Source: U.S. Department of Agriculture.

Note: The last observation refers to the 2016/17 crop year (July 2016 USDA update).

the real oil price drop.<sup>6</sup> The steady increase in incomes is estimated to shave another one-sixth off real grain prices during 2011-16 (Figure F6, right panel).

These developments are a reversal of trends during the boom part of the post-2000 commodity price cycle. During 2000-08, oil prices increased from \$35/bbl to \$94/bbl in real (2010) terms. The stock-to-use ratio for wheat, maize, and rice declined, on average, from 0.34 to 0.22 percent during this period (but was broadly constant for soybeans). While the decline in the stock-to-use ratio contributed up to 13 percentage points to the average grain and soybean price drop between 2000 and 2008, oil prices contributed about 16-18 percent (Figure F6, left panel).

#### Conclusion


Given the energy-intensive nature of agriculture, lower energy prices are expected to reduce the costs of producing food commodities. They should also ease policy pressures to encourage biofuels production, which has been a key source of growth in food commodity demand over the past decade. Energy prices declined 45 percent in 2015 and are projected to drop another 16 percent in 2016. Based on elasticity estimates from a reduced-form econometric model, it is shown that the impact of lower energy prices on food commodities was about twice as much compared to the impact of crop conditions.

#### Endnotes

 Links G1 and G2 represent the cases when biofuels become profitable. These scenarios are mostly relevant under high oil prices. For example, if biofuels are profitable (link G1) the price of oil acts as a floor to agricultural prices. Technological improvements under an induced innovation scenario could increase the energy

#### F6 Contribution to explained price variation

Percent (based on logarithmic changes)



Source: World Bank.

*Note:* Predicted contributions (of the three most important drivers) are defined as the parameter estimates times the logarithmic changes during 2000-08 and 2011-16.

content of biofuels crops thereby rendering biofuels profitable even under a low oil price scenario (link G2), in which case, again, oil prices set a floor for agricultural prices (see Baffes 2013).

- About 38 percent of U.S. maize goes to the production of ethanol—yet because one-third of maize returns to the feed industry in the form of byproducts, the actual share is 25 percent.
- 3. The literature typically assumes that when interest rates are low, increased consumption and larger stock holding will increase demand. Baffes and Savescu (2014) conjectured that the low cost of capital may have induced parallel (and similar) rightward shifts in both demand and supply schedules, thus explaining the muted impact of interest rate on commodity prices.
- 4. It has often been argued that changing consumption patterns by emerging economies, especially China and India, were key drivers of the boom (e.g., Krugman 2008, Wolf 2008, and Bourne 2009). However the evidence is to the contrary (see Alexandratos 2008; FAO 2008; Alexandratos and Bruinsma 2012; Sarris 2010; Baffes and Haniotis 2010; FAO 2009; and Lustig 2008). Deaton and Drèze (2008), noted that despite growing incomes, the caloric intake in India has followed a downward trend since the early 1990s.
- To ensure consistency with the model described in the Technical Appendix, the decomposition has been applied to logarithmic changes, not percentage changes.
- 6. Although crude oil price remained high during 2011-13, low natural gas prices in the U. S. not only kept in check the costs of producing food commodities in the U.S. but also reduced the price pressure on fertilizer prices. For example, following their all time high of almost \$9/mmbtu in 2008, U.S. natural gas prices have been declining steadily to \$2.60/mmbtu. And, unlike other commodity prices, U.S. natural gas prices did not rebound after the Great Recession because of the large expansion of shale gas.

#### References

- Akram, F.Q. 2009. "Commodity Prices, Interest Rates, and the Dollar." *Energy Economics*, 31, 838-851.
- Alexandratos, N. 2008. "Food Price Surges: Possible Causes, Past Experience, and Long-Term Relevance." *Population and Development Review*, 34, 599-629.
- Alexandratos, N., and J. Bruinsma 2012. World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Paper No. 12-03. Agricultural Development and Economics Division, Food and Agri-

culture Organization of the United Nations, Rome.

- Anzuini, A., M.J. Lombardi, and P. Pagano 2010. "The Impact of Monetary Policy Shocks on Commodity Prices." ECB Working Paper 1232. European Central Bank, Frankfurt, Germany.
- Baffes, J. 2007. "Oil Spills on Other Commodities." *Resources Policy*, 32, 126-134.
  - . 2013. "A Framework for Analysing the Interplay among Food, Fuels, and Biofuels." *Global Food Security*, 2, 110-116.
- Baffes, J., and A. Dennis. 2015. "Long-term Drivers of Food Prices." In *Trade policy and food security: Improving access to food in developing countries in the wake of high food prices*, Ch. 1, pp. 13-33, ed. I. Gillson and A. Fouad. Directions in Development, World Bank, Washington, DC.
- Baffes, J., and C. Savescu. 2014. "Monetary Conditions and Metals Prices." *Applied Economics Letters*, 21, 447-452.
- Baffes, J., and T. Haniotis. 2010. "Placing the Recent Commodity Boom into Perspective." In *Food Prices* and Rural Poverty, ch.2, pp. 40-70, ed. A. Aksoy and B. Hoekman. Centre for Economic Policy Research and the World Bank, Washington DC.

\_\_\_\_\_. Forthcoming. "What Explains Agricultural Prices?" *Journal of Agricultural Economics*.

- Baffes, J., and X.L. Etienne. 2016. "Analysing Food Prices Trends in the Context of Engel's Law and the Prebisch-Singer Hypothesis." Oxford Economic Papers, 68, 688-713.
- Bobenrieth, E., B. Wright, and D. Zeng. 2012. "Stocks-to-Use Ratios as Indicator of Vulnerability to Spikes in Global Cereal Markets." Paper presented at the Second Session of the Agricultural Marketing Information System, Global Food Market Group. Food and Agriculture Organization of the United Nations, Rome.
- Borensztein, E., and C.M. Reinhart. 1994. "The Macroeconomic Determinants of Commodity Prices." *IMF Staff Papers*, 41, 236-261.
- Bourne, J.K. 2009. "The Global Food Crisis: The End of Plenty." *National Geographic*, June.
- Chaudhuri, K. 2001. "Long-run Prices of Primary Commodities and Oil Prices." *Applied Economics*, 33, 531-538.
- Deaton, A., and G. Laroque. 1992. "On the Behavior of Commodity Prices." *Review of Economic Studies*, 59, 1-23.

- Deaton, A., and J. Dréze. 2008. "Nutrition in India: Facts and Interpretations." *Economic and Political Weekly*, 44, 42-65.
- De Gorter, H., and D.R. Just. 2009. "The Economics of a Blend Mandate for Biofuels." *American Journal* of Agricultural Economics, 91, 738-750.
- Engel, E. 1857. "Die Productions- und Konsumptionsverhaeltnisse des Koenigreichs Sachsen." Zeitschrift the Statistischen Bureaus des Koeniglich Saechsischen Ministeriums des Inneren No 8 and 9.
- FAO, Food and Agriculture Organization of the United Nations. 2009. The State of Agricultural Commodity Markets: High Food Prices and the Food Crisis—Experiences and Lessons Learned. Food and Agriculture Organization, Rome.
- \_\_\_\_\_\_. 2008. "Soaring Food Prices: Facts, Perspectives, Impacts, and Actions Required." Technical report presented at the FAO's 'High—Level Conference on World Food Security: The Challenges of Climate Change and Bioenergy, Rome.
- Frankel, J.A. 2014. "Effects of Speculation and Interest Rates in a 'Carry Trade' Model of Commodity Prices." *Journal of International Money and Finance*, 42, 88-112.
- Frankel, J.A., and A.K. Rose. 2010. "Determinants of Agricultural and Mineral Commodity Prices." In *Inflation in an Era of Relative Price Shocks*, edited by R. Fry, C. Jones, and C. Kent, 9-51. Reserve Bank of Australia and Centre for Applied Macroeconomic Research, Sydney, Australia.
- Gardner, B. 1981. "On the Power of Macroeconomic Linkages to Explain Events in U.S. Agriculture." *American Journal of Agricultural Economics*, 63, 871-878.
- Gilbert, C.L. 2010. "How to Understand High Food Prices." *Journal of Agricultural Economics*, 61, 398-425.
  - \_\_\_\_\_. 1989. "The Impact of Exchange Rates and Developing Country Debt on Commodity Prices." *Economic Journal*, 99, 773-783.
- Hanson, K., S. Robinson, and G.E. Schluter 1993. "Sectoral Effects of a World Oil Price Shock: Economywide Linkages to the Agricultural Sector." *Journal of Agricultural and Resource Economics*, 18, 96-116.
- Holtham, G.H. 1988. "Modeling Commodity Prices in a World Macroeconomic Model." In International commodity market models and policy analysis,

edited by O. Guvenen. Kluwer Academic Publishers, Boston, MA.

- Krugman, P. 2008. "Grains Gone Wild." *The New York Times*, April 7.
- Lamm, M.R., Jr. 1980. "The Role of Agriculture in the Macroeconomy: A Sectoral Analysis." *Applied Economics*, 12, 19-35.
- Lustig, N. 2008. "Thought for Food: The Challenges of Coping with Soaring Food Prices." Working Paper 155, Center for Global Development, Washington, DC.
- Moss, C.B, G. Livanis, and A. Schmitz. 2010. "The Effect of Increased Energy Prices on Agriculture: A Differential Supply Approach." *Journal of Agricultural and Applied Economics*, 42, 711–718.
- Prebisch, R. 1950. "The Economic Development of Latin America and its Principal Problems." *Economic Bulletin for Latin America* 7, 1-12.
- Radetzki, M. 1985. "Effects of a Dollar Appreciation on Dollar Prices in International Commodity Markets." *Resources Policy*, 11, 158-159.
- Reboredo, J.C. 2012. "Do Food and Oil Prices Comove?" *Energy Policy*, 49, 456-467.
- Saghaian, S.H. 2010. "The Impact of the Oil Sector on Commodity Prices: Correlation or Causation?" *Journal of Agricultural and Applied Economics*, 42, 477-485.
- Sarris, A. 2010. "Trade-Related Policies to Ensure Food (Rice) Security in Asia." In *The Rice Crisis*, edited by David Dawe, 61–87. Earthscan, London.
- Singer, H. 1950. Comments to the Terms of Trade and Economic Development. *Review of Economics* and Statistics 40, 84-89.
- Wolf, M. 2008. "Food Crisis is a Chance to Reform Global Agriculture." *Financial Times*, April 27.
- World Bank. 2015. Commodity Markets Outlook: How Important are China and India in Global Commodity Consumption? July. World Bank, Washington DC.
- Zhang, Z., L. Lohr, C. Escalante, and M. Wetzstein 2010. "Food Versus Fuel: What Do Prices Tell Us?" *Energy Policy*, 38, 445-451.
- Zilberman, D., G. Hochman, D. Rajagopal, S. Sexton, and G. Timilsina. 2013. "The Impact of Biofuels on Commodity Food Prices: Assessment of Findings." *American Journal of Agricultural Economics*, 95, 275-281.

# **Technical Appendix: Modeling food price trends**

To identify the long-term impact of the various sectoral and macroeconomic fundamentals on real commodity prices, this appendix presents estimates from a reduced-form econometric model reported in Baffes and Haniotis (2016). The model takes the following form:

$$\log (P_t) = \beta_0 + \beta_1 \log (Y_t) + \beta_2 R_t +$$
$$\beta_3 \log (X_t) + \beta_4 \log (S_{t-1}) + \beta_5 \log (P_t^E) + \varepsilon_t$$

 $P_t$  is the real price of the commodity.  $Y_t$  denotes real income (proxied by GDP),  $R_t$  denotes the real interest rate,  $X_t$  is the U.S. dollar exchange rate,  $S_t$  denotes the stock-to-use ratio,  $P_t^E$  is the real price of crude oil, the  $\beta_j s$  are parameters to be estimated and  $\varepsilon_t$  is the error term. Because the variables (except the interest rate) are expressed in logarithmic levels, the estimated parameters can be interpreted as elasticities.

The model is applied to five food commodities (maize, soybeans, wheat, rice, and palm oil) and to cotton, whose inclusion was motivated by a desire to account for as much of the world's arable land as possible. Commodity prices are annual averages from 1960 to 2014, expressed in U.S. dollars per metric ton for crops and in U.S. dollars per barrel for crude oil (pink sheet data. All commodity prices have been deflated by the Manufacturing Unit Value index (MUV). The MUV—often viewed as a global deflator—is a U.S. dollar trade-weighted index of manufactured goods exported from 15 economies (Brazil, Canada,

China, Germany, France, India, Italy, Japan, Mexico, Republic of Korea, South Africa, Spain, Thailand, United Kingdom, and United States). To obtain the real interest rate, the interest rate on the 3-month U.S. Treasury bill is adjusted by the U.S. Consumer Price Index. The exchange rate is the U.S. dollar real effective exchange rate against a basket of 26 currencies. Interest rate, exchange rate and CPI are taken from the Board of Governors of the Federal Reserve System. Income is proxied by the real global GDP, taken from the World Bank's World Development Indicators.

Before estimating the model, the unit root properties of all the variables under consideration were examined by using the modified Dickey-Fuller and Phillips-Perron testing procedures. The results of the stationarity tests indicate that each of the variables other than the stockto-use ratio contains a unit root, and the error terms of all regressions were stationary (stationarity test results are not reported here).

The model was estimated within an OLS (ordinary least-squares) and a panel framework. This choice was motivated by the desire to estimate the effects of the fundamentals on the prices of individual commodities (OLS estimates, reported in the first six columns of Table) and also to have a sense of the average effects across all commodities (panel estimates, reported in the last column of Table). Based on a Hausman test, the fixed effect model was rejected in favor of a random effect model (the chi-square statistic was 0.40 with a p-value of 0.995).

|                          | Maize    | Soybeans | Wheat    | Rice     | Palm oil | Cotton   | Panel    |
|--------------------------|----------|----------|----------|----------|----------|----------|----------|
| Constant                 | 13.90*** | 12.30**  | 11.30**  | 20.70*** | 15.40*** | 15.10*** | 4.32***  |
|                          | (6.71)   | (4.77)   | (4.82)   | (7.31)   | (4.68)   | (6.01)   | (12.31)  |
| Real GDP                 | -0.62*** | -0.54*** | -0.54*** | -0.72*** | -0.74*** | -0.71*** | -0.62*** |
|                          | (-7.86)  | (-5.48)  | (-6.10)  | (-6.05)  | (-5.92)  | (-7.33)  | (14.15)  |
| Real interest rate       | -0.02    | -0.05*** | -0.05*** | -0.03**  | -0.05*** | -0.03*** | -0.03*** |
|                          | (0.98)   | (-3.25)  | (-3.42)  | (-1.72)  | (-2.41)  | (-2.23)  | (-4.94)  |
| Real exchange rate       | -0.41    | -0.34    | -0.056   | -1.39*** | -0.22    | -0.22    | -0.45*** |
|                          | (1.16)   | (-0.93)  | (-0.16)  | (-3.45)  | (-0.47)  | (-0.61)  | (2.58)   |
| Stock-to-Use ratio (lag) | -0.48*** | -0.18*** | -0.43*** | -0.29*** | -0.34*** | -0.40*** | -0.33*** |
|                          | (6.90)   | (-3.38)  | (-4.58)  | (-3.39)  | (-3.15)  | (-4.64)  | (8.22)   |
| Real oil price           | 0.15***  | 0.18***  | 0.16***  | 0.17***  | 0.32***  | 0.13***  | 0.19***  |
|                          | (2.99)   | (3.62)   | (3.38)   | (3.11)   | (4.58)   | (2.66)   | (8.12)   |
| R-square                 | 0.76     | 0.63     | 0.63     | 0.73     | 0.61     | 0.73     | 0.64     |
| Nº of observations       | 55       | 50       | 55       | 55       | 50       | 55       | 310      |

#### **TABLE F1** Parameter estimates

Notes: All variables (except interest rate) are expressed in logarithmic terms. The dependent variable is the logarithm of the nominal price divided by the price of manufacture goods. Because of data unavailability, the regressions for soybeans and palm oil begin in 1965 (the rest span 1960-2014). The last row, Panel, reports estimates from a random effects model. The R-square for the Panel refers to the overall R-square. Absolute t-statistics in parentheses, \* = 10 percent, \*\* = 5 percent, \*\*\* = 1 percent.



# COMMODITY MARKET DEVELOPMENTS AND OUTLOOK

Energy Agriculture Fertilizers Metals and minerals Precious metals

## Energy


The World Bank Energy Price Index rose 29 percent in the second quarter of 2016 from the previous quarter. Oil jumped 37 percent on numerous supply outages, while coal prices rose 2 percent, also on reduced supply. Natural gas prices fell 5 percent on continued weak demand and oversupply.

#### Crude oil

Crude oil prices rose 37 percent in the second quarter and averaged \$44.8/bbl on a number of supply outages (Figure 3). Oil prices climbed for five straight months, averaging \$47.7/bbl in June, and have traded in a relatively narrow band of \$45-49/bbl since mid-May. Prices eased in July on slowing demand for gasoline and recovery of disrupted oil supply.

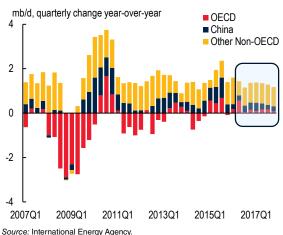
At their peak, large supply disruptions removed up to 2.5 mb/d of production during May/June, with losses concentrated in Canada because of wildfires in Alberta's oil sands region, and in Nigeria due to militant attacks on oil infrastructure. In addition there were disruptions in Kuwait, Iraq, Libya and elsewhere. Meanwhile, underlying non-OPEC production continued to decline, led by the United States, but this was partly offset by higher OPEC production, mainly from Iran. Global demand remained fairly robust, particularly in India, but there was noticeable slowing in the United States and China.

With the supply outages, the market quickly transitioned toward balance on a current supply/demand basis, though stocks remain near-record levels. Inventories are expected to decline modestly in the second half of the year, led by higher seasonal demand and declining non-OPEC supply—this despite a rebound in shut-in volumes in Canada.



#### 3 Crude oil prices

Note: Daily frequency. Last observation is July 22, 2016


The differential between West Texas Intermediate (WTI) and Brent spot crude oil prices narrowed to a small premium for WTI, owing to reduced supply from Canada and higher imports from offshore. The Brent market remained well supplied, and crude demand was partly curtailed by strikes at French refineries. Futures prices several years forward show the WTI discount to Brent widening to more than \$4/bbl, as the U.S. is expected to remain a large oil importer, and crude exports are expected to be limited despite lifting of the export ban.

#### Demand

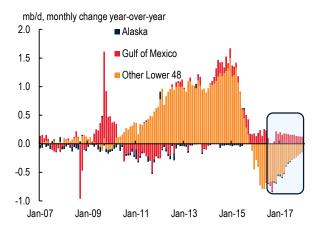
World oil demand in the first quarter rose by 1.6 mb/d or 1.7 percent y/y, down slightly from strong growth in 2015 of 1.9 mb/d or 2.0 percent, the largest gain in five years. Oil demand slowed in the second quarter, rising by 1.4 mb/d or 1.5 percent (Figure 4). The strength in oil demand last year was centered on gasoline, chiefly in the United States and China, but gasoline demand growth has slowed, partly due to the waning effect of low prices. OECD oil demand rose by 0.6 mb/d or 1.3 percent in the second quarter, with relatively strong increases in both Europe and the United States. U.S vehicle miles traveled remains strong, and gasoline demand surprised to the upside, with gasoil/diesel providing much of the growth.

Non-OECD oil demand growth in the first quarter continued at last year's pace of 1.4 mb/d or 3.0 percent. Much of the growth was in Asia, where oil demand rose by 1.0 mb/d or more than 4 percent. India provided the largest gain at 0.3 mb/d or 7 percent, led by diesel consumption, and continued the rapid gains from the second half of last year. China's domestic oil demand growth was noticeably weaker than last year, rising by just over 0.2 mb/d or 2 per-

#### 4 World oil demand growth



Note: Shaded area (2016Q1-2017Q4) represents IEA projections.


cent. Weakness in the industrial sector led to declines of gasoil/diesel and fuel oil, as well as slowing demand for gasoline. Non-OECD oil demand growth slowed in the second quarter to a gain of less than 0.9 mb/d or 1.8 percent, with most countries easing, with the exception of India. China's oil consumption continued its sluggish pace of just 2 percent.

World oil demand for 2016 is projected to increase by 1.3 mb/d or 1.3 percent to an average of 96.1 mb/d. OECD oil demand is projected to rise by 0.3 mb/d, with the United States providing much of the increase. Non-OECD oil demand is projected to rise by 1.2 mb/d or 2.4 percent, somewhat less than last year. Growth is expected to be led by India and China. In 2017, global demand trends are expected to be similar, albeit with slight easing.

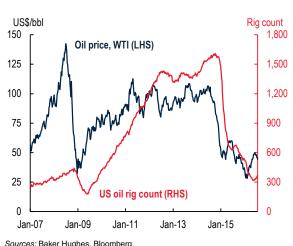
#### Supply

Global oil supply in the first quarter continued to exceed the level of consumption by 1.3 mb/d, somewhat less than the average of 1.6 mb/d in 2015. However, the gap narrowed to just 0.2 mb/d in the second quarter owing to supply outages and underlying production declines in non-OPEC countries. Non-OPEC supply fell in the first quarter of 2016 for the first time in more than four years, down 0.1 mb/d compared with the same period of 2015. Declines were concentrated in the United States, Brazil, China, Colombia and the Republic of Yemen, partly offset by gains in Russia and Canada. In the second quarter, non-OPEC supply fell by 1.3 mb/d, with much of the reduction the result of outages in Canada, and ongoing declines in U.S. shale production. Wildfires in northern Alberta caused a peak loss of 1.3 mb/d in early May from mainly oil sands and heavy oil projects. Most production came back online by end-June, with about 0.3 mb/d still ramping up in July.

U.S. crude oil production



Source: International Energy Agency.


Note: Shaded area (July 2016 to January 2018) represents IEA projections.

U.S. crude oil production fell from 9.7 mb/d in April 2015 to an estimated 8.8 mb/d in June. The decline was mainly in the on-shore lower-48 states where output dropped by 1.0 mb/d from its peak in March 2015 (Figure 5). About two-fifths of this decline has been in Texas, followed by decreases in North Dakota and Oklahoma. The U.S. Energy Information Administration projects that crude production will decline from 9.2 mb/d in the first quarter of 2016 to 8.1 mb/d during the third quarter of 2017 before trending upward.

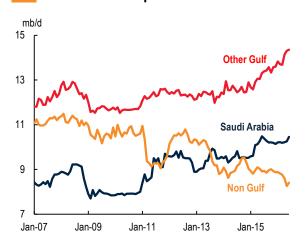
The U.S. production decline stemmed from a large drop in investment following the collapse in prices, which resulted in an 80 percent plunge in the number of rigs drilling for oil—to a low of just 318 rigs at end-May. However, the number of active rigs has edged higher to above 350 rigs, following the recent rise in oil prices (Figure 6). Much of the increase has been in the Permian and Eagle Ford basins in Texas, on assets with favorable returns. It is unlikely, however, that recent prices will be sufficient to induce a strong rebound in drilling, as prices closer to \$60/bbl and higher are generally thought necessary to generate significant investment and drilling programs.

The industry has partly offset the effects of lower investment by improving productivity through cost reductions and operating efficiencies. Well productivity in the Eagle Ford (Texas) and Bakken (North Dakota) basins has risen from less than 300 barrels per well in early 2012 to more than 800 and 1,000 barrels, respectively. For the Permian basin, productivity improved from 100 barrels per well to more than 500. The industry is also reducing its backlog of drilled but uncompleted wells, which can be completed at roughly two-thirds the cost of a new well.

OPEC (including newly rejoined Gabon) crude oil



#### 6 U.S. oil rig count and oil prices


Note: Weekly frequency. Last observation is July 22, 2016.

Sources: Baker Hughes, Bloomberg

production averaged 33.0 mb/d in the second quarter, up 0.2 mb/d from the first quarter, and more than 0.3 mb/d higher than the second half of last year. While total production was remarkably stable over the past year, there were significant changes among countries. Since the end of last year, OPEC Gulf production rose by 1.1 mb/d while non-Gulf output dropped by 0.5 mb/d (Figure 7). The largest decline was in Nigeria, where output fell from 1.8 mb/d at the beginning of this year to 1.4 mb/d in May due to acts of sabotage on oil infrastructure. Attacks by the Niger Delta Avengers on oil wells and pipelines brought Nigerian production to the lowest level since 1988. In the wake of lower oil prices, payments from the government to militants that were established under an amnesty signed in 2009 have fallen, and the militants are demanding a higher share of oil revenues. A ceasefire in June lifted production to 1.8 mb/d at month's end, but attacks resumed in July.

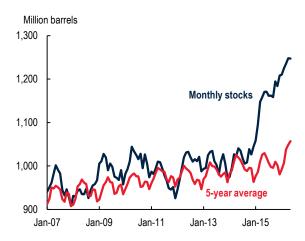
Production was also lowered by more than 0.1 mb/d in Libya because of a dispute between rival national oil companies that blocked exports from the eastern port of Marsa el-Hariga. However, an agreement in early July uniting rival administrations of the National Oil Company may result in higher exports and production. There were reduced flows from northern Iraq due to an ongoing dispute over revenues between Baghdad and the Kurdish Regional Government, and there was also a brief oil workers' strike in Kuwait in April. In Venezuela, power outages and missed payments to oil services companies contributed to a 0.2 mb/d output decline this year, with risks of further output disruptions associated with ongoing economic and political turmoil.

These losses were more than offset by a stronger-thanexpected 0.7 mb/d increase in Iranian production following the lifting of sanctions in January 2016.



#### OPEC crude oil production

and contract conditions. Saudi Arabia's production, which had averaged 10.2 mb/d over the past year, rose to nearly 10.5 mb/d in June, partly due to seasonally higher domestic power demand for air conditioning.


Global inventory builds have slowed as the market moved toward equilibrium. In the fourth quarter of 2015—a period when stocks typically fall—implied inventories soared by a record 1.8 mb/d, and rose by further 1.3 mb/d in first quarter. The stock buildup slowed significantly in April/May, with OECD crude oil inventories at a record 1.25 billion barrels (Figure 8). Stocks were particularly large in North America, but were also elevated in Europe and the Pacific regions as well. Product stocks continue to rise, in part because of slowing demand for gasoline.

#### Price projections and risks

Crude oil prices are projected to average \$43/bbl in 2016, a decline of 15 percent from last year. The market is expected to move into a small deficit in the second half of the year owing to continued declines in non-OPEC supply and limited gains in OPEC production, thereby allowing for a modest reduction in stocks. These trends are expected to continue in 2017, with a significant stock decline in the second half of the year, supporting moderately higher prices.

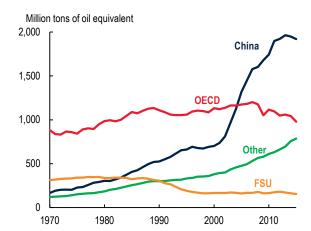
Upside risks to the price forecast include further supply outages in OPEC countries (Iraq, Nigeria, Venezuela), larger non-OPEC supply declines, and stronger demand. Downside price risks center on slower market rebalancing because of weak demand, the return of lost production, and persistent high stocks.

#### 8 OECD crude oil stocks



Source: International Energy Agency

Note: Previous 5-year average for each month. Last observation is May 2016.


Source: International Energy Agency Note: Last observation is June 2016.

#### Coal

Thermal coal prices rose 2 percent in the second quarter, the first increase in 10 consecutive quarters, reflecting a jump in China's imports and a tightening of coal supply. Production cuts in China, a reduction in Indonesian supply because of heavy rains, and low stocks at China's ports and utilities contributed to the pick-up in imports. Supplies also tightened due to production outages in Australia and lower availability from Colombia. Prices rose sharply in July on the back of strong seasonal demand, low inventories and tightening supply, but the market is expected to remain in structural oversupply going forward.

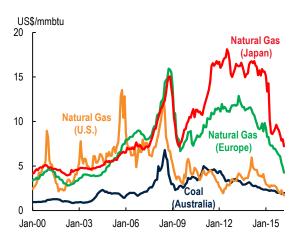
China consumes half of the world's coal output (Figure 9) and coal accounts for nearly two-thirds of the country's energy consumption. The government plans to reduce coal's share from 64 to 60 percent in 2020 by reducing the energy intensity of the economy by 15 percent and increasing the share of nuclear energy, natural gas and renewables. The government also plans to reduce coal production by 500 mt (13 percent of production) over the next 3-5 years. In April the government ordered that the statutory working days for coal miners be reduced to 276 days from 330 days per year.

Coal prices are expected to decline 11 percent in 2016, averaging \$51/ton, on relatively weak demand and continued oversupply. Import demand in China is expected to weaken, and will partly be offset by rising demand in India and other emerging markets. Production in India is growing under new government policies aiming to reduce imports significantly over the next few years. Global supplies are likely to remain ample, and there is large spare capacity that could be brought back on-line in countries such as Australia and Indonesia should prices firm.



#### 9 Coal consumption

Notes: Last observation is 2015. FSU (former Soviet Union) to 1984; CIS (Commonwealth of Independent States) thereafter.


#### Natural gas

Natural gas prices fell 5 percent in the second quarter amid weak demand, large stocks, and ample supply (Figure 10). The price of gas delivered to Japan plunged 18 percent to \$6.3/mmbtu, owing to weak demand and surplus seaborne supply from the Pacific and Atlantic Basins. While spot cargoes of liquefied natural gas (LNG) into Asia rose from around \$4/ mmbtu in April to \$5.5/mmbtu in early July on supply outages and a slower than expected ramp-up in U.S. and Australian supplies, but spot cargoes only account for 1-2 percent of global LNG trade. European gas prices dropped 15 percent to \$4.1/mmbtu on weak demand in the power sector. Spot prices also rose from under \$4/mmbtu to \$4.5 mmbtu in early July due to lower re-gasification rates at U.K. LNG terminals and unplanned outages in Norway.

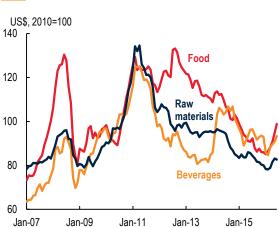
Meanwhile U.S. gas prices rose 8 percent to \$2.1/ mmbtu due to strong demand, declining production, and weak injections into storage. Prices jumped from a low of \$1.7/mmbtu in March to nearly \$3/mmbtu in late June, as hot weather boosted gas-fueled power generation to record levels, aided by weak nuclear and hydro generation. U.S. gas production is declining and exports are increasing by pipeline to Mexico and LNG to offshore markets. Consequently storage injections have been lower than normal, but inventories remain at historically high levels.

Natural gas prices are projected to fall in 2016, led by large declines in Europe (-38 percent to \$4.5/mmbtu) and Japan (-33 percent to \$7.0/mmbtu) on continued weak demand and surplus supply. Gas prices in the U.S. are expected fall by 12 percent to \$2.3 mmbtu due to high stocks. However, strong power demand, rising exports, and falling production growth are expected to help underpin U.S. prices.

#### 10 Coal and natural gas prices



Source: World Bank


Note: Last observation is June 2016.

Source: BP Statistical Review of World Energy.

## Agriculture

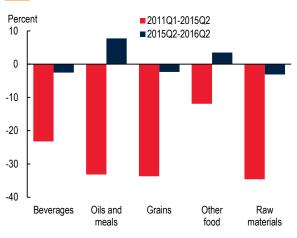
Agricultural prices reversed their year-long slide, rising for three straight months to June 2016. Secondquarter prices were up 8 percent from the first quarter of 2016 and were marginally higher than a year ago (Figure 11). Oils and meals prices gained 17 percent over the quarter, followed by beverages, other food items, and raw materials, which rose about 6 percent each. The rebound in prices was supported by floodrelated crop losses in South America, especially in Argentina and Uruguay, as well as a shortfall in Malaysian palm oil production and strong demand from China. Prices declined in June, however, following favorable news for the 2016-17 crop. Between mid-June and mid-July maize and wheat prices dropped more than 20 percent each while soybean prices declined nearly 10 percent.

Most agricultural commodity prices are expected to fall in 2016 from 2015, before recovering marginally in 2017. Grain prices are projected to decline 4 percent in 2016 (a less steep decline compared to the projected 5 percent drop in April. Oils and meals prices are expected to gain 3 percent rather than 4 percent projected contraction in April. Beverages and raw materials are forecast to drop 4 percent and 2 percent, respectively. Upside risks to this year's price forecast for agricultural commodity prices, especially grains, include challenging weather conditions due to La Niña—a cooling of the equatorial Pacific Ocean. The main long-term upside risk is increased use of agricultural commodity support policies. Upside or downside risks could also stem from energy prices, given the energy-intensive nature of agriculture, as well as biofuel policies (see Special Focus section).



#### 11 Agriculture price indexes

Source: World Bank. Note: Last observation is June 2016


#### Food

Grain prices rose 4 percent in the second quarter of 2016 but stood 3 percent lower than a year ago and 35 percent below their 2011 average (Figure 12). Wheat prices declined by 7 percent, while rice and maize prices gained 12 percent and 7 percent, respectively. The high second quarter average for grains (and soybeans) reflected various production issues, including crop damage in Argentina due to excessive rainfall (soybeans) and dry weather dampening prospects for the second harvest in Brazil (maize). Rice prices were on the rise due to the El Niño-related droughts that continued to affect the rice outlook.

Early indications for the 2016-17 season point to a favorable crop. Global production of wheat is expected to reach a new record, at 0.5 percent higher than 2015-16, according to the July assessment of the U.S. Department of Agriculture (USDA). Overall conditions for the global wheat crop are favorable. Yields in the European Union remain above its fiveyear average, and the U.S. harvest, currently underway, is very good. Conditions are also favorable in other important wheat producers, including China, the Russian Federation, Canada, Kazakhstan, and Australia. As a result of favorable supplies, the stockto-use ratio (a measure of the abundance of supplies relative to demand) is anticipated to reach 34.8 percent, marginally higher than last season's ratio, and a 17-year high. Trade volume for the 2016-17 season is expected to increase marginally.

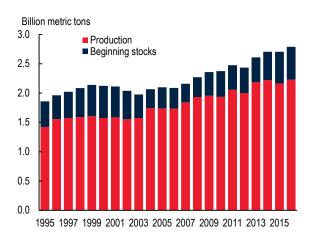
Production of maize is projected to increase 5.3 percent in 2016-17, reflecting good crop conditions in the United States, the world's top maize supplier, as well as in the European Union and Ukraine. Increased production, however, will be accompanied by an increase in consumption. Together, these projections

#### 12 Agriculture price indexes, change



Source: World Bank.

Note: Index changes are based on nominal quarterly averages.


imply that the stock-to-use ratio for maize at the end of the season will fall by 1 percentage point (from 21.5 to 20.6 percent). The volume of maize traded is expected to increase marginally, with higher imports by Bangladesh offsetting lower imports by China.

Rice production is projected to increase 2.3 percent in 2016-17. The increase follows last year's poor crop due to an El Niño-related shortfall in some producing countries in Asia, especially Thailand, where rice output declined from 18.8 million metric tons (mmt) in 2014-15 to 15.8 mmt in 2015-16. Rice production is expected to icrease in East Asia (Thailand and Cambodia) and Central and South America (Argentina, Brazil, and Uruguay). Despite increased production, the stock-to-use ratio will not change, as consumption is projected to increase by 2.3 percent. Trade volume is expected to change little.

According to the July USDA assessment, global supplies (i.e., beginning stocks plus production) of wheat, maize, and rice will each reach 2,789 mmt in 2016-17, 3 percent higher than last season's record supplies. If projections materialize, 2016-17 will be the fourth consecutive surplus crop year (Figure 13).

The World Bank's oil and meal price index increased nearly 17 percent in the second quarter from the first quarter, and stood at 8 percent higher than a year ago. Soybean prices gained 15 percent in the quarter while edible oil prices experienced across-the-board gains: palm oil (+12 percent), coconut and palm kernel oil (+20 percent and +24 percent, respectively), soybean oil (+6 percent), and rapeseed oil (+4 percent).

This season's outlook is favorable for edible oils (Figure 14). Following last season's lower production due to El Niño-related shortfall in palm oil production (a shortfall comparable to 1997, which was also a strong El Niño year), global production during 2016-17 is

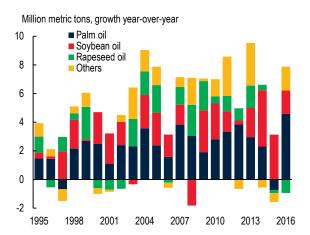


#### 13 Global grain supplies

Note: Grains include maize, wheat, and rice. Supply is the sum of production and beginning stocks.

expected to reach 214.2 mmt, up from last season's 205.6 mmt. Most of the increase will come from palm oil (4 mmt) and soybean oil (2.3 mmt).

The oilseed supply outlook is healthy, with next season's (October 2016 to September 2017) global supplies for the 10 major oilseeds projected to reach 626 mmt, 25 mmt higher than the current season. Most of the increase in supplies will come from a robust soybean crop, which is expected to reach 325 mmt, up from current season's 313 mmt.


In view of the adequately supplied food commodity markets, together with the projection of lower energy and fertilizer prices, the World Bank's food commodity price index is expected to advance only marginally in 2016, with a dispersion among various prices. An increase in the oils and meals component (+3 percent) will be balanced by a decline in grains (-4 percent). A moderate gain (+2 percent) in the food index is projected for 2017.

#### Risks

The forecast for food prices is subject to a number of short- and long-term risks. Most important among these are the evolution of energy prices, weather patterns (especially the possibility of a La Niña episode later in the season), trade policies aimed at supporting commodity producers, and biofuel policies.

Prices of agricultural commodities (especially those of grains and oilseeds) are affected by energy prices through two channels: directly through fuel (and other energy) costs, and indirectly through chemicals and fertilizers (some fertilizers are made directly from natural gas). Globally, energy constitutes more than 10 percent of the cost of agricultural production—four to five times the energy intensity of manufacturing (see *Special Focus* section). The transmission elas-

#### 14 Global production of key edible oils



Source: U.S. Department of Agriculture.

Note: Data is based on USDA's July 2016 update.

Source: U.S. Department of Agriculture.

ticity from energy to food commodity prices is about 0.20 over the long term, implying that a 50 percent reduction of energy prices is associated with a 10 percent decline in food prices.

Low energy prices are easing input cost pressures for food commodity producers, especially in locations where energy intensity in agriculture is highest, such as North America, Europe, China, and Brazil. Oil prices are expected to average \$43/bbl in 2016 (16 percent lower than 2015), while fertilizer prices are projected to fall 18 percent, on top of a 5 percent decline in 2015.

Last year's key weather risk, El Niño, has reached its neutral stage, although some of its effects are still visible. Its counterpart, La Niña—a cooling of the equatorial Pacific off the coast of South America—could materialize toward the end of 2016, although U.S. National Oceanic and Atmospheric Administration Climate Prediction Center lowered the probability of La Niña to 55-60 percent in July, from 75 percent in June.

In the current weak commodity price environment, governments are increasingly shifting from trade policies aimed at reducing consumer prices (frequent during the price spikes of 2007-08 and 2010-11 price spikes) to policies designed to raise producer prices. India, for instance, has extended the current 25 percent duty on wheat (up from 10 percent in October 2015) initially expected to remain in place until March 2016. India has also increased the minimum support price for rice. Similarly, South Africa raised import duties on wheat by 30 percent. Nigeria has announced various support measures, including subsidies for machinery and improved access to credit. On the other hand, agricultural support for OECD countries as a whole has roughly halved in intensity

sidies for machinery and improved access to credit. On the other hand, agricultural support for OECD countries as a whole has roughly halved in intensity **15 China's stocks of key commodities** Percent of world total  $^{70}$   $^{69}$   $^{2006-07 to 2015-16 average}$  $^{2016-2017}$ 

46

50

40

30

20

Cotton

104

65

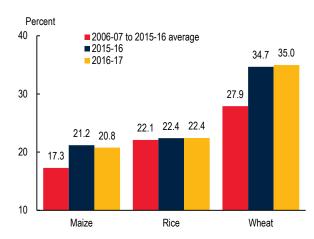
Maize

112

59

Wheat

Sources: U.S. Department of Agriculture, International Cotton Advisory Committee. Note: Figures on top of columns represent China's stocks in million metric tons.


Rice

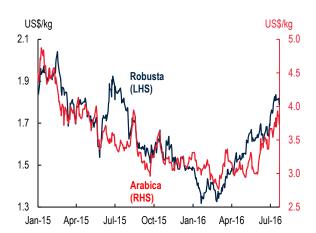
#### over the past 30 years and now amounts to 17 percent of gross farm receipts according to the 2016 OECD Agricultural Policy Monitor. However, average support levels in the emerging economies have increased from very low or even negative levels to approach the average level of OECD countries.

An important policy challenge is China's decision to end its maize stockpiling program later this year (this follows last year's cotton de-stocking initiative.) China's stockpiling program is intended to be replaced by a less price-distortionary program, perhaps, along the lines of earlier programs implemented by the European Union, Mexico, and the United States. China's changes in farm policies are important for two reasons. First, China holds a disproportionally large amount of stocks, which are 50 to 90 percent higher than the past decade's average (Figure 15). Second, the policy changes come at a time when commodity markets are well-supplied, with stock-to-use ratios well above their 10-year average (Figure 16). Thus, any release in stocks could depress prices and impact production.

Finally, the outlook assumes that biofuels will continue to be a source of demand for food commodities—mainly maize for ethanol in the United States, sugarcane for ethanol in Brazil, and edible oils for biodiesel in Europe. Biofuels currently account for nearly 3 percent of global arable land and 1.5 mb/d (1.6 percent) of global liquid energy consumption. Yet the role of biofuels will be less important in the long run, as policymakers increasingly realize that the environmental and energy independence benefits stemming from biofuels policies are not as strong as originally envisaged. Indeed, biofuel production grew an average of 1 percent in the current and past year, versus 17 percent during 2001-14.

#### 16 Global stock-to-use ratios




Source: U.S. Department of Agriculture. Note: Data is based on USDA's July 2016 update.

#### **Beverages**

The World Bank's beverage price index rose 6 percent in the second quarter of 2016, reflecting gains across all components. Arabica and robusta coffee prices increased 5 percent and 11 percent in the quarter (Figure 17). The strength in arabica prices stems from weather concerns in Brazil which included both a frost scare and excessive rainfall, the latter associated with lower quality coffee. Robusta prices increased as record output in Vietnam was offset by falling production in Brazil and Indonesia. Despite the shortfalls, the coffee market is still in surplus, as global output of 153.8 million bags for 2015-16 exceeds consumption by 2.3 million bags. In view of the wellsupplied market, only marginal increases in coffee prices are expected in 2016.

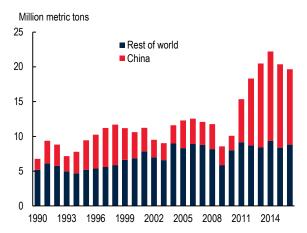
Cocoa prices increased 4 percent in the quarter and are marginally higher than a year ago. The pickup of cocoa prices reflects the widened deficit in the 2015-16 season due to downward revision in the South America crop, especially Brazil, and lower arrivals in Côte d'Ivoire. Because cocoa futures contracts are priced in pounds sterling, the sharp depreciation of the pound following the U.K. referendum pushed cocoa futures to a six-year high. Cocoa prices are projected to average \$3.03/kg in 2016, down from \$3.10/ kg in 2015.

The three-auction tea average, the global price indicator, gained almost 8 percent in the quarter with a large dispersion among its components: Colombo (+6 percent), Mombasa (-10 percent), and Kolkata (+34 percent). The strength of Kolkata prices reflects seasonal supply tightness, while lower Mombasa prices due to weak demand and robust supplies from East Africa producers. Tea prices are projected to drop 4 percent in 2016.



<sup>17</sup> Coffee prices

Note: Daily frequency. Last observation is July 22, 2016.


#### Agricultural raw materials

The World Bank's raw material price index gained 5 percent in the second quarter of 2016. The index is down 3 percent from a year earlier, however, and nearly 40 percent lower than its early 2011 peak. This decline is similar to the other two industrial commodity price indexes—energy and metals, down 55 and 50 percent since their 2011 peaks and—reflects in part, slowing of the global economy.

Cotton prices rose 6 percent in the quarter reaching \$1.63/kg in June, a two-year high. The strength reflects the large drop of global production in 2015-16 to 21.1 mmt, down 17 percent from 2014-15. However, production is forecast to increase by 6 percent in 2016-17, to 23 million tons, as world cotton area expands. Most of the gains in area are accounted for by India, the world's top cotton supplier. World cotton production is expected to be unchanged after declining 3 percent last season due to intense competition from synthetic products. Despite the recent increase in cotton prices, the cotton market is mired in unusually high stocks, the equivalent of almost one year's worth of consumption. China holds 55 percent of those stocks (Figure 18). No change is expected in the cotton price for 2016 and only a marginal increase is projected in 2017.

Natural rubber prices rose 27 percent in the quarter on strong Chinese import demand—up 14 percent for the first five months of 2016 on a year-on-year basis. Growth in China was mirrored by similar growth of tire exports to the United States. On the supply side, extremely low rainfall in Thailand delayed the start of the tapping season, thus weakening the availability of supplies. Despite the price strengthening, natural rubber prices are expected to average marginally lower in 2016, before increasing by about

#### 18 Cotton stocks



Source: International Cotton Advisory Committee Note: Last observation is 2016-17.

Source: Bloomberg.

### **Fertilizers**

Fertilizer prices fell 7 percent in the second quarter (Figure 19), a sixth consecutive quarterly decline, due to weak import demand, high stocks, and ample supply. Phosphate prices led the decline with TSP plunging 14 percent, and potash and urea prices falling 7 and 5 percent, respectively. Demand weakness continues to stem from poor farmer profitability, low crop prices, and weak currencies of key importing countries—although all elements reversed slightly during the quarter. Despite cuts to production, surplus supply remains because of falling costs, cheaper feedstock prices, and new low-cost capacity.

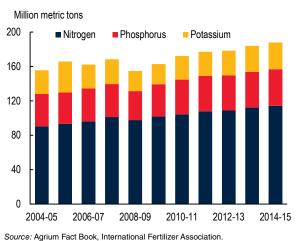
Phosphate prices dropped by 14 percent (TSP) and 4 percent (DAP) as oversupply continued to weigh on prices. Although demand increased in Brazil due to improved credit and farmer margins, global demand remains weak. Demand in India, the second largest phosphate consumer after China, has been weak as buyers awaited a new phosphoric acid contract with Morocco's OCP-a nine month agreement that was signed in July at 15 percent lower than the first quarter. This is expected to unlock pent-up global demand in the third quarter, but may be overshadowed by a potential surge in exports from China and new supply from Morocco. Chinese producers cut production this year, but there is uncertainty whether exports will increase or if there will be further cuts. Supply pressures will continue, with additional Moroccan capacity starting in December and in Saudi Arabia in 2017.

Potash (potassium chloride) prices fell 7 percent owing to weak demand, high stocks, and ample supply. Production has been curtailed and mines closed by a number of producers to help contain oversupply. Demand has been weak, in part as purchasers awaited contract settlements between major buyers and the

#### US\$/mt DAP 1,200 1,000 Potassium 800 chloride 600 400 200 Urea 0 Jan-07 Jan-09 Jan-11 Jan-13 Jan-15

19 Fertilizer prices

Source: World Bank. Note: Last observation is June 2016


#### Belarus Potash Company. The first was signed with India at end June for \$227/mt, and another with China (the largest purchaser of potash) in July for \$219/mt—the latter down \$96/mt from last year's settlement. Other contracts are expected to be signed, while deferred demand is expected to pick up in the near term. However, the market will remain over-supplied, with new capacity coming online over the next couple of years.

Urea prices fell 5 percent to the lowest level in over 11 years, as the market continues to be impacted by large capacity additions and falling raw materials prices (natural gas globally, and coal in China). Prices have been relatively stable this year due to export restraint by Chinese producers and surprisingly strong demand in Brazil. However, production capacity is expected to grow, notably in Saudi Arabia by year-end. U.S. capacity is expected to climb further due to low natural gas prices, with U.S. imports expected to contract—further bloating seaborne supply. China's exports are also expected to increase.

Fertilizer prices are projected to decline by 18 percent in 2016 due to relatively weak demand and rising supply capacity. Nutrient application, which has been increasing (Figure 20), remains constrained due to poor farmers' margins, but there has been some improvement in crop prices and domestic currencies. Prices are generally expected to increase moderately over the medium term due to expected growth in demand, higher energy costs, and new capacity required for primary and processed supply.

Risks to the forecast are skewed to the downside on weak demand and expected increases in new production capacity. On the upside, higher agriculture prices and currency appreciation could improve farmer margins and boost fertilizer demand and prices.

#### 20 Global fertilizer consumption



*Note:* Fertilizer consumption is expressed in nutrient content.

## Metals and minerals

Metals prices rose by 5 percent in the second quarter, the first increase in seven consecutive quarters (Figure 21). Prices rebounded from lows during the first quarter on production cuts, stronger demand, falling stocks, and a weaker dollar. The gains have been concentrated in iron ore, zinc and tin due to supply tightness, while there were modest increases in most other metals and a small decrease in lead. All metal prices continued to more higher in July, particularly nickel on expected supply tightness in the Philippines. Metals consumption has been relatively strong due to firming industrial activity globally. China's metal consumption has been buoyed by stimulus measures and increases in fixed asset investment, notably for infrastructure. Construction has also been positive for metals demand, and although housing inventory remains high, the excess supply is easing.

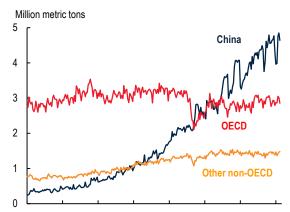
On the supply side, declining investment and shut-in of high-cost operations has been more than offset by new low-cost capacity from legacy projects. The recent price rally may tempt producers to restart idled capacity or delay further closures. Supply at existing operations has been supported by significant cost reductions (notably for energy), producer country currency devaluations, and better management practices. However a reversal in exchange rates and oil prices is now reflating production costs.

China remains an important driver for metals demand. The country's share of world metal consumption rose above 50 percent in 2015 (Figure 22), and the country accounted for the majority of global growth over the past 15 years (Figure 23). However the transition from an investment/export driven economy to one that is consumption-led could reduce demand growth for raw materials.



#### 21 Metal and mineral prices

Note: Last observation is June 2016.


#### Individual metal trends

Iron ore prices rose 16 percent, up a second consecutive quarter, on supply reductions (notably Samarco's closure in Brazil), seasonal restocking, and strong steel demand in China for construction and infrastructure. Prices spiked to \$70 per metric ton (mt) during April but settled back to around \$55/mt in early July. Demand is expected to ease in the second half of the year as inventories are replenished and steel production slows seasonally. New low-cost capacity is expected to come on line over the next 2-3 years, which may pressure high-cost capacity to close. Higher prices this year have delayed closures, but further cuts will be required to balance the market going forward. A key uncertainty will be China's level of steel demand.

Zinc prices rose 14 percent on expected market tightness due to the closure of depleted mines, and pricedriven curtailments by Glencore and Nyrstar. Exhausted mines have already closed in Australia, Canada and Ireland. London Metal Exchange (LME) stocks of refined metal continue to move lower (Figure 24), but there is an unknown amount of inventory off-exchange. No major mine capacity is expected near term, but two large mine projects, Gamsberg and Dugald River, are planned for 2017-18. Additional supply could come from many small Chinese mines, and idled capacity could also return. Nevertheless, reduced ore concentrate is expected to constrain refined zinc output and push prices upward over the medium term. A key uncertainty is China's demand for galvanized steel-the main end-use market for zinc.

Tin prices rose 9 percent in the quarter on lower export volumes from Indonesia and stronger-than-expected demand from the electronics sector. LME stocks rose slightly but remain low by historical levels. In Indonesia, the world's largest exporter of tin, the government is clamping down on illegal mining and

#### 22 World refined metal consumption



Jan-95 Jan-98 Jan-01 Jan-04 Jan-07 Jan-10 Jan-13 Jan-16 Source: World Bureau of Metal Statistics. Note: Last observation is May 2016.

requiring audits before granting new export permits. This has kept shipments below typical levels. Flooding and permanent closure of a major producer also tightened the country's supply. Shipments from Myanmar continue to fill the gap, but there is uncertainty whether output can be sustained. Although supply growth remains limited in the near term, new supplies are expected from Brazil, Australia and Africa, and higher prices could reactivate idled capacity.

Aluminum prices rose 4 percent in the quarter on falling LME inventories, strong demand, and an easing of China's exports of semi-manufactured aluminum products. The global market remains oversupplied, mainly in China, while the rest of the world is in deficit due to significant capacity closures. High-cost capacity has also been shut in China, and the government plans further closures of outdated, polluting output, but new capacity continues to come online there and elsewhere. The outlook for global aluminum consumption is robust due to its many uses, favorable properties, and substitution possibilities. However, further closures are required to balance the market and reduce the large inventory overhang.

Nickel prices rose 4 percent on falling LME stocks and strong demand from China's stainless steel sector. Stainless production has surged due to rising demand from construction and infrastructure expansion, as well as for restocking and higher exports. Global nickel production is falling, with the largest cuts being nickel pig iron (NPI) output in China. Philippine ore exports to China are down owing to weather and mine exhaustion, but concerns of additional mine closures have arisen as the new government performs regulatory and environmental audits of the industry, especially of small mines. Elsewhere Indonesia is commissioning new NPI capacity for export, following its 2014 ban on the export of ore. The market appears to

Million metric tons, change year-over-year 12 12 14 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 Source: World Bureau of Metal Statistics. Note: Last observation is 2014-15 change.

World metal consumption growth

23

#### 24 Zinc price and LME stocks



Note: Daily frequency. Last observation is July 22, 2016.

# nly/domand deficit which is av

ANALYSIS

23

be moving into a supply/demand deficit which is expected to begin a long process of reducing the large levels of inventory.

Copper prices rose 1 percent in the quarter, but weakened in early July as LME stocks rose. The market remains oversupplied despite a number of production cuts, and new capacity is expected on line in the next 2-3 years. The market is expected to remain in surplus, especially as Chinese demand growth slows.

In contrast to the above increases, lead prices fell 1 percent on seasonally weak battery demand and small increase in stocks. Prices jumped in early July, however, and may reflect investor concerns of supply tightening from closure of large zinc mines.

#### Price projections and risks

Metals prices are projected to decline by 11 percent in 2016 due to slowing demand in emerging economies, and increases in new production capacity. The largest decline is for nickel, which is expected to fall by 22 percent as a result of large stocks and insufficient production cuts. Large price declines are also expected for copper (down 15 percent) and iron ore (down 10 percent) due to expected gains in new capacity. Most other prices are expected to fall moderately as markets remain in surplus, with the exception of zinc which is facing mine supply constraints. Markets are expected to tighten over the medium term due to reduced investment in new capacity, rising global demand, and environmental policy constraints.

Downside risks to the forecast include slower demand in China, higher-than-expected production, and further cost reductions. Upside risks are centered on stronger global demand and supply shortfalls from project delays, operational disruptions, falling ore grades, increased environmental constraints, and more closures of high-cost capacity.

### **Precious metals**

Precious metals prices rose 8 percent in the second quarter on strong investment demand, a weaker dollar, and safe-haven buying (Figure 25). Silver led the way, surging 13 percent, followed by platinum, up 10 percent. Gold prices trailed these increases, but still rose 7 percent to above \$1350/toz in early July. The investor-driven gains were the result of weak U.S. economic data that delayed the U.S. Federal Reserve plans to raise policy interest rates. Prices also received a boost from the Brexit vote, as the outlook for Europe became less confident amid weakening global growth and political uncertainty. Near-term prices are likely to depend primarily on changing investor expectations about U.S. Federal Reserve policy and its impact on the dollar.

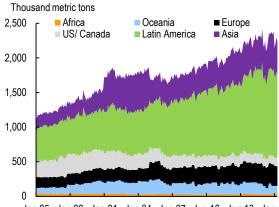
Silver prices jumped 13 percent on strong investment demand, with significant inflows into Exchange Traded Funds. The gold/silver price ratio dropped below 74 in June from above 80 in March. [The average ratio from 1985 is 66.] Physical demand was weighed down by sluggish industrial activity and ongoing thrifting in the electronics and photovoltaic sectors and declining photographic applications. Mine supply is up 5 percent, but faces lower by-product output from declining lead/zinc and other metal production (Figure 26).

Platinum prices rose 10 percent in the quarter, benefiting from a broader rise in precious metals prices. Physical demand is slowing, especially from the jewelry sector in China, while demand from auto manufacturers remains robust. Mine supply is declining on lower investment, production outages, and effects of drought in South Africa. The market is expected to record a deficit this year, but large above ground stocks are expected to dampen near term price pres-



#### 25 Precious metal prices

Source. World Bark.


Note: Last observation is June 2016.

sures. Wage negotiations in South Africa are about to commence after the previous agreement expired at end-June. The last wage negotiations were accompanied by an unprecedented five-month strike in 2014.

Gold prices increased 7 percent in quarter, and in early July were up 25 percent from a multi-year low in December of \$1076/toz. The Federal Reserve's delay in raising interest rates helped bolster investment demand. Rising interest rates typically have negative implications for gold prices, as investors seek yield-bearing assets. Physical gold demand fell in the two largest consuming countries—India and China—due to higher prices and currency depreciation. In India demand was also curtailed because of a strike at the beginning of March (induced by a tax on jewelry manufacturing) that kept some shops closed into early April. Global gold mine supply is up 3.5 percent this year, as miners continue to benefit from cost reductions and producer hedging.

Precious metals prices are projected to rise 7 percent in 2016, mainly due to stronger investment demand. Silver and gold prices are expected to rise 8 percent, but are likely to decline going forward on expectations of U.S. monetary policy tightening and strengthening value of the dollar. Physical demand for gold is expected to remain robust in India and China, while mine production is expected to expand, although benefits from energy and currency cost reductions may have run their course. Platinum prices are projected to decline 5 percent on a large stock overhang. Downside risks to the forecast include stronger-thanexpected monetary tightening, dollar strengthening, and demand weakening. Upside risks include rising inflation, weakening economic growth, increasing financial market stress in key economies, adverse geopolitical events and stronger physical demand from consumers, central banks and investors.

#### 26 Global silver production



Jan-95 Jan-98 Jan-01 Jan-04 Jan-07 Jan-10 Jan-13 Jan-16 Source: World Bureau of Metal Statistics.

Note: Last observation is April 2016.





# Historical commodity prices Price forecasts

# TABLE A.1 Commodity prices

|                                        |                |    |              |       | 00           | 00           | ~            | 04           | 00           |              |             |              |
|----------------------------------------|----------------|----|--------------|-------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|
| Commodity                              | Unit           |    | 2014         | 2015  | Q2<br>2015   | Q3<br>2015   | Q4<br>2015   | Q1<br>2016   | Q2<br>2016   | Apr<br>2016  | May<br>2016 | Jun<br>2016  |
| Energy                                 |                |    |              |       |              |              |              |              |              |              |             |              |
| Coal, Australia                        | \$/mt          | *  | 70.1         | 57.5  | 59.0         | 57.5         | 52.3         | 50.9         | 51.9         | 50.8         | 51.5        | 53.4         |
| Coal, Colombia                         | \$/mt          |    | 65.9         | 52.5  | 54.3         | 50.4         | 48.0         | 42.7         | 44.6         | 43.1         | 43.9        | 46.6         |
| Coal, South Africa                     | \$/mt          |    | 72.3         | 57.0  | 60.7         | 54.3         | 51.1         | 51.5         | 54.7         | 52.7         | 54.0        | 57.3         |
| Crude oil, average                     | \$/bbl         |    | 96.2         | 50.8  | 60.5         | 48.8         | 42.2         | 32.7         | 44.8         | 40.8         | 45.9        | 47.7         |
| Crude oil, Brent                       | \$/bbl         | *  | 98.9         | 52.4  | 62.1         | 50.0         | 43.4         | 34.4         | 46.0         | 42.3         | 47.1        | 48.5         |
| Crude oil, Dubai                       | \$/bbl         | *  | 96.7         | 51.2  | 61.4         | 49.9         | 41.2         | 30.6         | 42.9         | 39.0         | 44.0        | 45.8         |
| Crude oil, WTI                         | \$/bbl         | *  | 93.1         | 48.7  | 57.8         | 46.4         | 42.0         | 33.2         | 45.5         | 41.0         | 46.7        | 48.8         |
| Natural gas, Index                     | 2010=100       | )  | 111.7        | 73.3  | 74.2         | 72.2         | 61.4         | 52.2         | 49.6         | 47.1         | 46.8        | 55.0         |
| Natural gas, Europe                    | \$/mmbtu       | *  | 10.05        | 7.26  | 7.33         | 6.86         | 6.26         | 4.84         | 4.10         | 4.13         | 4.04        | 4.13         |
| Natural gas, US                        | \$/mmbtu       | *  | 4.37         | 2.61  | 2.73         | 2.75         | 2.11         | 1.98         | 2.13         | 1.90         | 1.92        | 2.57         |
| Natural gas, Japan                     | \$/mmbtu       | *  | 16.04        | 10.40 | 9.18         | 9.23         | 8.94         | 7.70         | 6.29         | 6.38         | 6.25        | 6.25         |
| Non-Energy<br>Agriculture<br>Beverages |                |    |              |       |              |              |              |              |              |              |             |              |
| Cocoa                                  | \$/kg          | ** | 3.06         | 3.14  | 3.07         | 3.25         | 3.30         | 2.98         | 3.10         | 3.08         | 3.10        | 3.13         |
| Coffee, Arabica                        | \$/kg          | ** | 4.42         | 3.53  | 3.54         | 3.36         | 3.31         | 3.31         | 3.49         | 3.40         | 3.42        | 3.64         |
| Coffee, Robusta                        | \$/kg          | ** | 2.22         | 1.94  | 1.98         | 1.87         | 1.79         | 1.65         | 1.84         | 1.77         | 1.85        | 1.89         |
| Tea, average                           | \$/kg          |    | 2.72         | 2.71  | 2.79         | 2.85         | 2.76         | 2.36         | 2.55         | 2.51         | 2.56        | 2.58         |
| Tea, Colombo                           | \$/kg          | ** | 3.54         | 2.96  | 3.00         | 2.83         | 2.85         | 2.82         | 2.97         | 2.94         | 3.05        | 2.93         |
| Tea, Kolkata                           | \$/kg          | ** | 2.58         | 2.42  | 2.56         | 2.78         | 2.52         | 1.89         | 2.53         | 2.55         | 2.50        | 2.54         |
| Tea, Mombasa                           | \$/kg          | ** | 2.05         | 2.74  | 2.80         | 2.95         | 2.91         | 2.38         | 2.14         | 2.04         | 2.12        | 2.27         |
| Food<br>Oils and Meals                 |                |    |              |       |              |              |              |              |              |              |             |              |
| Coconut oil                            | \$/mt          | ** | 1,280        | 1,110 | 1,115        | 1,067        | 1,109        | 1,273        | 1,531        | 1,586        | 1,445       | 1,563        |
| Copra                                  | \$/mt          |    | 854          | 735   | 737          | 708          | 737          | 855          | 1,019        | 1,045        | 963         | 1,048        |
| Fishmeal                               | \$/mt          |    | 1,709        | 1,558 | 1,523        | 1,472        | 1,524        | 1,465        | 1,526        | 1,478        | 1,514       | 1,586        |
| Groundnuts                             | \$/mt          |    | 1,296        | 1,248 | 1,290        | 1,193        | 1,175        | 1,158        | 1,204        | 1,163        | 1,200       | 1,250        |
| Groundnut oil                          | \$/mt          | ** | 1,313        | 1,337 | 1,346        | 1,332        | 1,298        | 1,277        | 1,550        | 1,350        | 1,600       | 1,700        |
| Palm oil                               | \$/mt          | ** | 821          | 623   | 664          | 574          | 570          | 631          | 704          | 722          | 706         | 683          |
| Palmkernel oil                         | \$/mt          |    | 1,121        | 909   | 957          | 802          | 831          | 1,032        | 1,283        | 1,304        | 1,234       | 1,312        |
| Soybean meal                           | \$/mt          | ** | 528          | 395   | 391          | 398          | 358          | 328          | 419          | 355          | 434         | 467          |
| Soybean oil                            | \$/mt          | ** | 909          | 757   | 774          | 736          | 743          | 749          | 795          | 796          | 791         | 798          |
| Soybeans<br>Grains                     | \$/mt          | ** | 492          | 390   | 394          | 385          | 372          | 370          | 424          | 393          | 422         | 457          |
| Barley                                 | \$/mt          | ** | 138          | 194   | 201          | 200          | 187          | 183          | 172          | 172          | 172         | 171          |
| Maize                                  | \$/mt          | ** | 193          | 170   | 168          | 169          | 167          | 160          | 171          | 164          | 169         | 180          |
| Rice, Thailand 5%                      | \$/mt          | ** | 423          | 386   | 385          | 374          | 368          | 379          | 423          | 395          | 433         | 441          |
| Rice, Thailand 25%                     | \$/mt          |    | 382          | 373   | 372          | 362          | 359          | 370          | 408          | 386          | 415         | 422          |
| Rice, Thailand A1                      | \$/mt          |    | 425          | 386   | 388          | 376          | 365          | 373          | 408          | 384          | 414         | 427          |
| Rice, Vietnam 5%                       | \$/mt          |    | 407          | 352   | 351          | 337          | 356          | 362          | 374          | 371          | 377         | 372          |
| Sorghum                                | \$/mt          |    | 207          | 205   | 215          | 190          | 176          | 174          | 174          | 174          | 174         | 174          |
| Wheat, US HRW                          | \$/mt          | ** | 285          | 204   | 216          | 183          | 180          | 191          | 178          | 187          | 172         | 174          |
| Wheat, US SRW                          | \$/mt          |    | 245          | 206   | 205          | 196          | 201          | 190          | 190          | 193          | 190         | 187          |
|                                        |                |    |              |       |              |              |              |              |              |              |             |              |
| Other Food                             | ¢///a          |    | 1.04         | 0.90  | 0.92         | 0.90         | 0.88         | 0.91         | 0.94         | 0.94         | 0.93        | 0.94         |
| Bananas, EU                            | \$/kg          | ** |              |       |              |              |              |              |              |              |             |              |
| Bananas, US                            | \$/kg          | ** | 0.93<br>4.95 | 0.96  | 0.97<br>4.47 | 0.95<br>4.55 | 0.93         | 1.03<br>3.72 | 0.99         | 0.99         | 0.99        | 0.99<br>4.00 |
| Meat, beef<br>Meat, chicken            | \$/kg<br>\$/kg | ** | 2.43         | 2.53  | 2.55         | 4.55<br>2.55 | 3.91<br>2.50 | 2.47         | 3.95<br>2.46 | 3.91<br>2.46 | 2.47        | 4.00<br>2.47 |
| Meat, sheep                            | \$/kg          |    | 6.39         | 5.22  | 5.38         | 5.07         | 4.82         | 4.51         | 4.66         | 4.56         | 4.71        | 4.71         |
| Oranges                                | \$/kg          | ** | 0.78         | 0.68  | 0.62         | 0.65         | 4.02<br>0.73 | 0.69         | 0.78         | 0.71         | 0.76        | 4.71         |
| Shrimp                                 | \$/kg          |    | 17.25        | 14.36 | 15.65        | 15.43        | 10.50        | 10.83        | 10.80        | 11.02        | 10.69       | 10.69        |
| Sugar, EU                              | \$/kg          | ** | 0.43         | 0.36  | 0.36         | 0.36         | 0.36         | 0.36         | 0.37         | 0.37         | 0.37        | 0.37         |
| Sugar, US                              | \$/kg          | ** | 0.43         | 0.55  | 0.54         | 0.54         | 0.56         | 0.57         | 0.57         | 0.57         | 0.60        | 0.37         |
| Sugar, World                           | \$/kg          | ** | 0.37         | 0.30  | 0.29         | 0.27         | 0.32         | 0.31         | 0.01         | 0.34         | 0.38        | 0.43         |
|                                        | ψικι           |    | 0.07         | 0.00  | 0.29         | 0.21         | 0.52         | 0.01         | 0.00         | 0.04         | 0.00        | 0.40         |

# **TABLE A.1 Commodity prices**

| Sawnwood, Africa \$/cu<br>Sawnwood, S.E. Asia \$/cu<br>Woodpulp \$/m<br>Other Raw Materials<br>Cotton \$/kg<br>Rubber, RSS3 \$/kg<br>Rubber, TSR20 \$/kg<br>Fertilizers<br>DAP \$/m<br>Phosphate rock \$/m<br>Potassium chloride \$/m<br>TSP \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um **<br>neets um **<br>um **<br>ut **<br>g **<br>g **<br>g **<br>g **<br>tt **<br>tt **<br>tt ** | 465<br>282<br>517<br>789<br>898<br>877<br>1.83<br>1.96<br>1.71<br>472<br>472<br>110 | 389<br>246<br>451<br>733<br>833<br>875<br>1.55<br>1.56<br>1.37<br>459 | 2015<br>387<br>245<br>450<br>734<br>835<br>875<br>1.59<br>1.79<br>1.52 | 2015<br>389<br>244<br>447<br>743<br>845<br>875<br>1.56<br>1.46<br>1.34 | 2015<br>383<br>245<br>450<br>727<br>827<br>875<br>1.53<br>1.26<br>1.20 | 386<br>258<br>474<br>686<br>780<br>875<br>1.48<br>1.31<br>1.15 | 2016<br>395<br>276<br>506<br>688<br>782<br>875<br>1.57<br>1.66<br>1.38 | 2016<br>397<br>272<br>498<br>686<br>780<br>875<br>1.53<br>1.72<br>1.48 | 2016<br>396<br>273<br>501<br>696<br>792<br>875<br>1.55<br>1.67 | 2016<br>393<br>282<br>518<br>681<br>775<br>875<br>1.63<br>1.63<br>1.28 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|
| Logs, S.E. Asia \$/ct<br>Plywood ¢/sl<br>Sawnwood, Africa \$/ct<br>Sawnwood, S.E. Asia \$/ct<br>Woodpulp \$/m<br>Other Raw Materials<br>Cotton \$/kc<br>Rubber, RSS3 \$/kc<br>Rubber, TSR20 \$/kc<br>Fertilizers<br>DAP \$/m<br>Phosphate rock \$/m<br>Potassium chloride \$/m<br>TSP \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | um **<br>neets um **<br>um **<br>ut **<br>g **<br>g **<br>g **<br>g **<br>tt **<br>tt **<br>tt ** | 282<br>517<br>789<br>898<br>877<br>1.83<br>1.96<br>1.71<br>472<br>110               | 246<br>451<br>733<br>833<br>875<br>1.55<br>1.56<br>1.37<br>459        | 245<br>450<br>734<br>835<br>875<br>1.59<br>1.79<br>1.52                | 244<br>447<br>743<br>845<br>875<br>1.56<br>1.46                        | 245<br>450<br>727<br>827<br>875<br>1.53<br>1.26                        | 258<br>474<br>686<br>780<br>875<br>1.48<br>1.31                | 276<br>506<br>688<br>782<br>875<br>1.57<br>1.66                        | 272<br>498<br>686<br>780<br>875<br>1.53<br>1.72                        | 273<br>501<br>696<br>792<br>875<br>1.55<br>1.67                | 282<br>518<br>681<br>775<br>875<br>1.63<br>1.58                        |
| Plywood¢/slSawnwood, Africa\$/cuSawnwood, S.E. Asia\$/cuWoodpulp\$/mOther Raw Materials*/mCotton\$/kgRubber, RSS3\$/kgRubber, TSR20\$/kgFertilizers*/mDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | heets<br>um **<br>um **<br>ut **<br>g **<br>g **<br>g **<br>g **<br>tt **<br>tt **<br>tt **       | 517<br>789<br>898<br>877<br>1.83<br>1.96<br>1.71<br>472<br>110                      | 451<br>733<br>833<br>875<br>1.55<br>1.56<br>1.37<br>459               | 450<br>734<br>835<br>875<br>1.59<br>1.79<br>1.52                       | 447<br>743<br>845<br>875<br>1.56<br>1.46                               | 450<br>727<br>827<br>875<br>1.53<br>1.26                               | 474<br>686<br>780<br>875<br>1.48<br>1.31                       | 506<br>688<br>782<br>875<br>1.57<br>1.66                               | 498<br>686<br>780<br>875<br>1.53<br>1.72                               | 501<br>696<br>792<br>875<br>1.55<br>1.67                       | 518<br>681<br>775<br>875<br>1.63<br>1.58                               |
| Plywood       ¢/sł         Sawnwood, Africa       \$/cu         Sawnwood, S.E. Asia       \$/cu         Woodpulp       \$/m         Other Raw Materials       \$/cu         Cotton       \$/kg         Rubber, RSS3       \$/kg         Rubber, TSR20       \$/kg         Fertilizers       \$/m         DAP       \$/m         Phosphate rock       \$/m         Spannel Chloride       \$/m         Spannel Spannele | um **<br>um **<br>g **<br>g **<br>g **<br>g **<br>t **<br>tt **<br>tt **<br>tt **                 | 789<br>898<br>877<br>1.83<br>1.96<br>1.71<br>472<br>110                             | 733<br>833<br>875<br>1.55<br>1.56<br>1.37<br>459                      | 734<br>835<br>875<br>1.59<br>1.79<br>1.52                              | 743<br>845<br>875<br>1.56<br>1.46                                      | 727<br>827<br>875<br>1.53<br>1.26                                      | 686<br>780<br>875<br>1.48<br>1.31                              | 688<br>782<br>875<br>1.57<br>1.66                                      | 686<br>780<br>875<br>1.53<br>1.72                                      | 696<br>792<br>875<br>1.55<br>1.67                              | 681<br>775<br>875<br>1.63<br>1.58                                      |
| Sawnwood, Africa \$/cu<br>Sawnwood, S.E. Asia \$/cu<br>Woodpulp \$/m<br>Other Raw Materials<br>Cotton \$/kg<br>Rubber, RSS3 \$/kg<br>Rubber, TSR20 \$/kg<br>Fertilizers<br>DAP \$/m<br>Phosphate rock \$/m<br>Potassium chloride \$/m<br>TSP \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | um **<br>um **<br>g **<br>g **<br>g **<br>g **<br>t **<br>tt **<br>tt **<br>tt **                 | 789<br>898<br>877<br>1.83<br>1.96<br>1.71<br>472<br>110                             | 733<br>833<br>875<br>1.55<br>1.56<br>1.37<br>459                      | 734<br>835<br>875<br>1.59<br>1.79<br>1.52                              | 743<br>845<br>875<br>1.56<br>1.46                                      | 727<br>827<br>875<br>1.53<br>1.26                                      | 686<br>780<br>875<br>1.48<br>1.31                              | 688<br>782<br>875<br>1.57<br>1.66                                      | 686<br>780<br>875<br>1.53<br>1.72                                      | 696<br>792<br>875<br>1.55<br>1.67                              | 681<br>775<br>875<br>1.63<br>1.58                                      |
| Sawnwood, S.E. Asia \$/ct<br>Woodpulp \$/m<br>Other Raw Materials<br>Cotton \$/kg<br>Rubber, RSS3 \$/kg<br>Rubber, TSR20 \$/kg<br>Fertilizers<br>DAP \$/m<br>Phosphate rock \$/m<br>Potassium chloride \$/m<br>TSP \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | um **<br>it<br>g **<br>g **<br>g **<br>g<br>ut **<br>it **<br>it **                               | 898<br>877<br>1.83<br>1.96<br>1.71<br>472<br>110                                    | 833<br>875<br>1.55<br>1.56<br>1.37<br>459                             | 835<br>875<br>1.59<br>1.79<br>1.52                                     | 845<br>875<br>1.56<br>1.46                                             | 827<br>875<br>1.53<br>1.26                                             | 780<br>875<br>1.48<br>1.31                                     | 782<br>875<br>1.57<br>1.66                                             | 780<br>875<br>1.53<br>1.72                                             | 792<br>875<br>1.55<br>1.67                                     | 775<br>875<br>1.63<br>1.58                                             |
| Woodpulp\$/mOther Raw MaterialsCotton\$/kgRubber, RSS3\$/kgRubber, TSR20\$/kgFertilizersDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt ***<br>9 ***<br>9 ***<br>9 ***<br>1t ***<br>1t ***<br>1t ***                                   | 877<br>1.83<br>1.96<br>1.71<br>472<br>110                                           | 875<br>1.55<br>1.56<br>1.37<br>459                                    | 875<br>1.59<br>1.79<br>1.52                                            | 875<br><mark>1.56</mark><br>1.46                                       | 875<br>1.53<br>1.26                                                    | 875<br><mark>1.48</mark><br>1.31                               | 875<br>1.57<br>1.66                                                    | 875<br>1.53<br>1.72                                                    | 875<br>1.55<br>1.67                                            | 875<br><u>1.63</u><br>1.58                                             |
| Other Raw MaterialsCotton\$/kgRubber, RSS3\$/kgRubber, TSR20\$/kgFertilizers\$/mDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 **<br>9 **<br>9 **<br>9 **<br>9 **<br>9 **<br>1t **<br>1t **                                    | 1.83<br>1.96<br>1.71<br>472<br>110                                                  | 1.55<br>1.56<br>1.37<br>459                                           | 1.59<br>1.79<br>1.52                                                   | <mark>1.56</mark><br>1.46                                              | 1.53<br>1.26                                                           | <mark>1.48</mark><br>1.31                                      | 1.57<br>1.66                                                           | 1.53<br>1.72                                                           | <mark>1.55</mark><br>1.67                                      | <mark>1.63</mark><br>1.58                                              |
| Cotton\$/kgRubber, RSS3\$/kgRubber, TSR20\$/kgFertilizersDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g **<br>g **<br>g **<br>t **<br>t **<br>t **                                                      | 1.96<br>1.71<br>472<br>110                                                          | 1.56<br>1.37<br>459                                                   | 1.79<br>1.52                                                           | 1.46                                                                   | 1.26                                                                   | 1.31                                                           | 1.66                                                                   | 1.72                                                                   | 1.67                                                           | 1.58                                                                   |
| Rubber, RSS3\$/kgRubber, TSR20\$/kgFertilizersDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g **<br>g **<br>g **<br>t **<br>t **<br>t **                                                      | 1.96<br>1.71<br>472<br>110                                                          | 1.56<br>1.37<br>459                                                   | 1.79<br>1.52                                                           | 1.46                                                                   | 1.26                                                                   | 1.31                                                           | 1.66                                                                   | 1.72                                                                   | 1.67                                                           | 1.58                                                                   |
| Rubber, TSR20\$/kgFertilizersDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9<br>9<br>nt **<br>nt **<br>nt **<br>nt **                                                        | 1.71<br>472<br>110                                                                  | 1.37<br>459                                                           | 1.52                                                                   |                                                                        |                                                                        |                                                                |                                                                        |                                                                        |                                                                |                                                                        |
| FertilizersDAP\$/mPhosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt **<br>ht **<br>ht **                                                                           | 472<br>110                                                                          | 459                                                                   |                                                                        | 1.34                                                                   | 1.20                                                                   | 1.15                                                           | 1.38                                                                   | 1 4 8                                                                  |                                                                |                                                                        |
| DAP \$/m<br>Phosphate rock \$/m<br>Potassium chloride \$/m<br>TSP \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt **<br>nt **<br>nt **                                                                           | 110                                                                                 |                                                                       |                                                                        |                                                                        |                                                                        |                                                                |                                                                        | 1.10                                                                   | 1.37                                                           | 1.28                                                                   |
| Phosphate rock\$/mPotassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nt **<br>nt **<br>nt **                                                                           | 110                                                                                 |                                                                       |                                                                        |                                                                        |                                                                        |                                                                |                                                                        |                                                                        |                                                                |                                                                        |
| Potassium chloride\$/mTSP\$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt **<br>nt **                                                                                    |                                                                                     | <i></i>                                                               | 469                                                                    | 464                                                                    | 419                                                                    | 367                                                            | 351                                                                    | 358                                                                    | 349                                                            | 346                                                                    |
| TSP \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt **                                                                                             | 007                                                                                 | 117                                                                   | 115                                                                    | 117                                                                    | 123                                                                    | 116                                                            | 115                                                                    | 115                                                                    | 115                                                            | 115                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   | 297                                                                                 | 303                                                                   | 307                                                                    | 303                                                                    | 297                                                                    | 283                                                            | 263                                                                    | 269                                                                    | 264                                                            | 256                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   | 388                                                                                 | 385                                                                   | 380                                                                    | 380                                                                    | 380                                                                    | 328                                                            | 282                                                                    | 278                                                                    | 284                                                            | 285                                                                    |
| Urea, E. Europe \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nt **                                                                                             | 316                                                                                 | 273                                                                   | 277                                                                    | 268                                                                    | 251                                                                    | 209                                                            | 198                                                                    | 204                                                                    | 200                                                            | 191                                                                    |
| Metals and Minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   |                                                                                     |                                                                       |                                                                        |                                                                        |                                                                        |                                                                |                                                                        |                                                                        |                                                                |                                                                        |
| Aluminum \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt **                                                                                             | 1,867                                                                               | 1,665                                                                 | 1,770                                                                  | 1,592                                                                  | 1,494                                                                  | 1,514                                                          | 1,571                                                                  | 1,571                                                                  | 1,551                                                          | 1,591                                                                  |
| Copper \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt **                                                                                             | 6,863                                                                               | 5,510                                                                 | 6,057                                                                  | 5,267                                                                  | 4,885                                                                  | 4,675                                                          | 4,733                                                                  | 4,873                                                                  | 4,695                                                          | 4,633                                                                  |
| Iron ore \$/di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mt **                                                                                             | 96.9                                                                                | 55.8                                                                  | 58.3                                                                   | 55.0                                                                   | 47.0                                                                   | 48.3                                                           | 56.0                                                                   | 61.0                                                                   | 55.0                                                           | 52.0                                                                   |
| Lead \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt **                                                                                             | 2,095                                                                               | 1,788                                                                 | 1,942                                                                  | 1,717                                                                  | 1,682                                                                  | 1,738                                                          | 1,716                                                                  | 1,732                                                                  | 1,708                                                          | 1,709                                                                  |
| Nickel \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt **                                                                                             | 16,893                                                                              | 11,863                                                                | 13,056                                                                 | 10,579                                                                 | 9,423                                                                  | 8,508                                                          | 8,815                                                                  | 8,879                                                                  | 8,660                                                          | 8,906                                                                  |
| Tin \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nt **                                                                                             | 21,899                                                                              | 16,067                                                                | 15,590                                                                 | 15,230                                                                 | 15,077                                                                 | 15,439                                                         | 16,900                                                                 | 17,033                                                                 | 16,707                                                         | 16,962                                                                 |
| Zinc \$/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt **                                                                                             | 2,161                                                                               | 1,932                                                                 | 2,192                                                                  | 1,843                                                                  | 1,612                                                                  | 1,677                                                          | 1,916                                                                  | 1,855                                                                  | 1,869                                                          | 2,023                                                                  |
| Precious Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                                                     |                                                                       |                                                                        |                                                                        |                                                                        |                                                                |                                                                        |                                                                        |                                                                |                                                                        |
| Gold \$/to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )Z ***                                                                                            | 1,266                                                                               | 1,161                                                                 | 1,193                                                                  | 1,124                                                                  | 1,107                                                                  | 1,181                                                          | 1,260                                                                  | 1,242                                                                  | 1,261                                                          | 1,276                                                                  |
| Silver \$/to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                     | 15.72                                                                 | 16.42                                                                  | 14.91                                                                  | 14.80                                                                  | 14.91                                                          | 16.86                                                                  | 16.36                                                                  | 16.95                                                          | 17.29                                                                  |
| Platinum \$/to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   | 1,384                                                                               | 1,053                                                                 | 1,127                                                                  | 986                                                                    | 907                                                                    | 914                                                            | 1,005                                                                  | 994                                                                    | 1,036                                                          | 984                                                                    |
| Commodity Price Indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2010-1                                                                                           | 00)                                                                                 |                                                                       |                                                                        |                                                                        |                                                                        |                                                                |                                                                        |                                                                        |                                                                |                                                                        |
| Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2010-1                                                                                           | 118.3                                                                               | 64.9                                                                  | 75.5                                                                   | 62.7                                                                   | 54.2                                                                   | 43.0                                                           | 55.7                                                                   | 51.1                                                                   | 56.6                                                           | 59.5                                                                   |
| Non-energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   | 97.0                                                                                | 82.4                                                                  | 84.8                                                                   | 80.6                                                                   | 77.6                                                                   | 76.0                                                           | 81.1                                                                   | 79.6                                                                   | 80.9                                                           | 82.6                                                                   |
| Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   | 102.7                                                                               | 89.3                                                                  | 90.2                                                                   | 88.0                                                                   | 85.9                                                                   | 84.5                                                           | 91.3                                                                   | 88.4                                                                   | 91.4                                                           | 94.0                                                                   |
| Beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                   | 101.8                                                                               | 93.5                                                                  | 93.6                                                                   | 94.0                                                                   | 93.1                                                                   | 86.2                                                           | 91.3                                                                   | 89.6                                                                   | 90.8                                                           | 93.4                                                                   |
| Food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                   | 107.4                                                                               | 90.9                                                                  | 91.6                                                                   | 88.8                                                                   | 86.6                                                                   | 86.7                                                           | 94.9                                                                   | 90.9                                                                   | 94.9                                                           | 98.9                                                                   |
| Oils and Meals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   | 109.0                                                                               | 85.2                                                                  | 86.7                                                                   | 83.1                                                                   | 79.6                                                                   | 79.9                                                           | 93.5                                                                   | 87.7                                                                   | 94.3                                                           | 98.3                                                                   |
| Grains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   | 103.9                                                                               | 88.8                                                                  | 89.9                                                                   | 85.7                                                                   | 84.1                                                                   | 84.3                                                           | 87.8                                                                   | 85.7                                                                   | 87.3                                                           | 90.4                                                                   |
| Other Food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   | 108.4                                                                               | 100.3                                                                 | 99.7                                                                   | 99.2                                                                   | 98.0                                                                   | 97.6                                                           | 103.2                                                                  | 99.7                                                                   | 102.7                                                          | 107.2                                                                  |
| Raw Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   | 91.9                                                                                | 83.2                                                                  | 85.1                                                                   | 83.1                                                                   | 80.7                                                                   | 78.4                                                           | 82.5                                                                   | 81.7                                                                   | 83.2                                                           | 82.6                                                                   |
| Timber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                   | 104.9                                                                               | 96.1                                                                  | 96.2                                                                   | 96.9                                                                   | 95.4                                                                   | 92.2                                                           | 93.7                                                                   | 93.2                                                                   | 94.4                                                           | 93.6                                                                   |
| Other Raw Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   | 77.8                                                                                | 69.2                                                                  | 73.1                                                                   | 67.9                                                                   | 64.5                                                                   | 63.4                                                           | 70.2                                                                   | 69.0                                                                   | 70.9                                                           | 70.6                                                                   |
| Fertilizers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   | 100.5                                                                               | 95.4                                                                  | 95.6                                                                   | 94.4                                                                   | 92.3                                                                   | 81.6                                                           | 76.1                                                                   | 77.1                                                                   | 76.5                                                           | 74.8                                                                   |
| Metals and Minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                   | 84.8                                                                                | 66.9                                                                  | 72.4                                                                   | 63.9                                                                   | 58.8                                                                   | 58.0                                                           | 60.7                                                                   | 62.0                                                                   | 60.0                                                           | 60.2                                                                   |
| Base Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ***                                                                                               |                                                                                     | 73.6                                                                  | 72.4                                                                   | 70.0                                                                   | 65.0                                                                   | 63.8                                                           | 65.9                                                                   | 66.7                                                                   | 65.1                                                           | 65.9                                                                   |
| Precious Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                   | 101.1                                                                               | 90.6                                                                  | 93.5                                                                   | 87.4                                                                   | 86.1                                                                   | 90.9                                                           | 97.9                                                                   | 96.3                                                                   | 98.1                                                           | 99.3                                                                   |

Source: See Appendix C.

Notes: (\*) Included in the energy index; (\*\*) Included in the non-energy index; (\*\*\*) Included in the precious metals index: (\*\*\*\*) Metals and Minerals exluding iron ore.

### TABLE A.2 Commodity price forecasts in nominal U.S. dollars

|                            |                             | <i>,</i> ,     |                         |                         |               |               | Forecas       | ete           |               |               |
|----------------------------|-----------------------------|----------------|-------------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Commodity                  | Unit                        | 2013           | 2014                    | 2015                    | 2016          | 2017          | 2018          | 2019          | 2020          | 2025          |
| Energy                     |                             |                |                         |                         |               |               |               |               |               |               |
| Coal, Australia            | \$/mt                       | 84.6           | 70.1                    | 57.5                    | 51.0          | 51.9          | 52.9          | 53.8          | 54.8          | 60.0          |
| Crude oil, average         | \$/bbl                      | 104.1          | 96.2                    | 50.8                    | 43.0          | 53.2          | 59.9          | 62.7          | 65.6          | 82.6          |
| Natural gas, Europe        | \$/mmbtu                    | 11.79          | 10.05                   | 7.26                    | 4.50          | 4.80          | 5.11          | 5.45          | 5.81          | 8.00          |
| Natural gas, US            | \$/mmbtu                    | 3.73           | 4.37                    | 2.61                    | 2.30          | 3.00          | 3.50          | 3.68          | 3.88          | 5.00          |
| Natural gas, Japan         | \$/mmbtu                    | 15.96          | 16.04                   | 10.40                   | 7.00          | 7.28          | 7.58          | 7.88          | 8.20          | 10.00         |
| Non-Energy<br>Agriculture  |                             |                |                         |                         |               |               |               |               |               |               |
| Beverages                  | <b>•</b> "                  | 0.44           | 0.00                    | 0.44                    | 0.40          | 0.00          | 0.00          | 0.00          | 0.00          | 0.50          |
| Cocoa                      | \$/kg                       | 2.44           | 3.06                    | 3.14                    | 3.10          | 3.03          | 2.96          | 2.89          | 2.82          | 2.50          |
| Coffee, Arabica            | \$/kg                       | 3.08           | 4.42                    | 3.53                    | 3.35          | 3.37          | 3.38          | 3.40          | 3.42          | 3.50          |
| Coffee, Robusta            | \$/kg                       | 2.08<br>2.86   | 2.22<br>2.72            | 1.94<br>2.71            | 1.70<br>2.60  | 1.72          | 1.74<br>2.70  | 1.76<br>2.76  | 1.79<br>2.81  | 1.90          |
| Tea, average               | \$/kg                       | 2.00           | 2.12                    | 2.71                    | 2.00          | 2.65          | 2.70          | 2.70          | 2.01          | 3.10          |
| Food<br>Oils and Meals     |                             |                |                         |                         |               |               |               |               |               |               |
| Coconut oil                | \$/mt                       | 941            | 1,280                   | 1,110                   | 1,400         | 1,349         | 1,299         | 1,251         | 1,206         | 1,000         |
| Groundnut oil              | \$/mt                       | 1,773          | 1,313                   | 1,337                   | 1,500         | 1,521         | 1,542         | 1,564         | 1,586         | 1,700         |
| Palm oil                   | \$/mt                       | 857            | 821                     | 623                     | 650           | 665           | 681           | 697           | 713           | 800           |
| Soybean meal               | \$/mt                       | 545            | 528                     | 395                     | 380           | 390           | 400           | 411           | 422           | 480           |
| Soybean oil                | \$/mt                       | 1,057          | 909                     | 757                     | 775           | 797           | 820           | 844           | 868           | 1,000         |
| Soybeans                   | \$/mt                       | 538            | 492                     | 390                     | 410           | 421           | 432           | 444           | 456           | 520           |
| Grains                     | <b>(</b> )+                 | 000            | 400                     | 404                     | 100           | 100           | 404           | 100           | 100           | 000           |
| Barley<br>Maize            | \$/mt<br>\$/mt              | 202<br>259     | <mark>138</mark><br>193 | <mark>194</mark><br>170 | 180<br>165    | 182<br>170    | 184<br>176    | 186<br>182    | 189<br>188    | 200<br>220    |
| Rice, Thailand, 5%         | \$/mt                       | 506            | 423                     | 386                     | 400           | 401           | 402           | 403           | 404           | 410           |
| Wheat, US, HRW             | \$/mt                       | 312            | 285                     | 204                     | 180           | 188           | 197           | 206           | 216           | 270           |
| Other Food                 |                             |                |                         |                         |               |               | 107           |               | 210           | 210           |
| Bananas, US                | \$/kg                       | 0.92           | 0.93                    | 0.96                    | 1.00          | 0.99          | 0.98          | 0.97          | 0.96          | 0.92          |
| Meat, beef                 | \$/kg                       | 4.07           | 4.95                    | 4.42                    | 3.90          | 3.93          | 3.96          | 4.00          | 4.03          | 4.20          |
| Meat, chicken              | \$/kg                       | 2.29           | 2.43                    | 2.53                    | 2.50          | 2.46          | 2.43          | 2.40          | 2.36          | 2.20          |
| Oranges                    | \$/kg                       | 0.97           | 0.78                    | 0.68                    | 0.75          | 0.77          | 0.79          | 0.81          | 0.83          | 0.95          |
| Shrimp<br>Sugar, World     | <mark>\$/kg</mark><br>\$/kg | 13.84<br>0.39  | 17.25<br>0.37           | 14.36<br>0.30           | 11.00<br>0.35 | 11.21<br>0.35 | 11.42<br>0.36 | 11.63<br>0.36 | 11.85<br>0.36 | 13.00<br>0.38 |
| Raw Materials              | φ/kg                        | 0.59           | 0.57                    | 0.50                    | 0.55          | 0.55          | 0.50          | 0.50          | 0.50          | 0.36          |
| Timber                     |                             |                |                         |                         |               |               |               |               |               |               |
| Logs, Africa               | \$/cum                      | 464            | 465                     | 389                     | 390           | 401           | 412           | 424           | 436           | 500           |
| Logs, S.E. Asia            | \$/cum                      | 305            | 282                     | 246                     | 265           | 272           | 280           | 288           | 296           | 340           |
| Sawnwood, S.E. Asia        | a \$/cum                    | 853            | 898                     | 833                     | 790           | 811           | 832           | 855           | 877           | 1,000         |
| Other Raw Materia          | als                         |                |                         |                         |               |               |               |               |               |               |
| Cotton                     | \$/kg                       | 1.99           | 1.83                    | 1.55                    | 1.55          | 1.61          | 1.68          | 1.74          | 1.81          | 2.20          |
| Rubber, RSS3               | \$/kg                       | 2.79           | 1.96                    | 1.56                    | 1.50          | 1.57          | 1.65          | 1.73          | 1.81          | 2.30          |
| Tobacco                    | \$/mt                       | 4,589          | 4,991                   | 4,908                   | 5,000         | 4,942         | 4,884         | 4,827         | 4,771         | 4,500         |
| Fertilizers                |                             |                |                         |                         |               |               |               |               |               |               |
| DAP                        | \$/mt                       | 445            | 472                     | 459                     | 355           | 364           | 372           | 381           | 391           | 440           |
| Phosphate rock             | \$/mt                       | 148            | 110                     | 117                     | 118           | 117           | 116           | 115           | 114           | 110           |
| Potassium chloride         | \$/mt                       | 379            | 297                     | 303                     | 270           | 274           | 278           | 283           | 287           | 310           |
| TSP                        | \$/mt<br>\$/mt              | 382<br>340     | 388<br>316              | 385<br>273              | 300<br>200    | 306<br>208    | 312<br>216    | 319<br>224    | 325<br>232    | 360<br>280    |
| Urea, E. Europe            |                             | 340            | 310                     | 213                     | 200           | 208           | 210           | 224           | 232           | 280           |
| Metals and Mineral         |                             | 4.047          | 4 007                   | 4.005                   | 4 575         | 4 000         | 4.070         | 4 704         | 4 700         | 0.400         |
| Aluminum                   | \$/mt                       | 1,847          | 1,867                   | 1,665                   | 1,575         | 1,626         | 1,679         | 1,734         | 1,790         | 2,100         |
| Copper                     | \$/mt<br>\$/dmt             | 7,332<br>135.4 | 6,863<br>96.9           | 5,510<br>55.8           | 4,650<br>50.0 | 4,866<br>45.0 | 5,092<br>47.1 | 5,329<br>49.3 | 5,577<br>51.7 | 7,000         |
| Iron ore<br>Lead           | \$/amt<br>\$/mt             | 2,140          | 2,095                   | 1,788                   | 50.0<br>1,775 | 45.0          | 47.1          | 49.3          | 51.7<br>1,992 | 2,300         |
| Nickel                     | \$/mt                       | 15,032         | 2,095<br>16,893         | 1,788                   | 9,200         | 10,029        | 10,933        | 11,935        | 12,992        | 2,300         |
| Tin                        | \$/mt                       | 22,283         | 21,899                  | 16,067                  | 9,200         | 17,128        | 17,672        | 18,234        | 18,814        | 20,000        |
| Zinc                       | \$/mt                       | 1,910          | 2,161                   | 1,932                   | 1,850         | 2,200         | 2,224         | 2,248         | 2,273         | 2,400         |
| Precious Metals            |                             | ,              | ,                       |                         | ,             | ,             | ,             | ,             | ,             | ,             |
| Gold                       | \$/toz                      | 1,411          | 1,265                   | 1,161                   | 1,250         | 1,219         | 1,190         | 1,160         | 1,132         | 1,000         |
| Silver                     | \$/toz                      | 23.85          | 1,205                   | 15.72                   | 1,250         | 16.89         | 16.77         | 16.66         | 1,132         | 16.00         |
| Platinum                   | \$/toz                      | 1,487          | 1,384                   | 1,053                   | 1,000         | 1,046         | 1,094         | 1,145         | 1,197         | 1,500         |
| Next update: October 2016. |                             | .,             | .,                      | .,                      | .,000         | .,010         | .,            | .,            | .,            | .,000         |

Next update: October 2016.

### TABLE A.3 Commodity price forecasts in constant U.S. dollars (2010=100)

|                           |                             |        |        |        |        |        | Farrage     | -1-                | -      | -      |
|---------------------------|-----------------------------|--------|--------|--------|--------|--------|-------------|--------------------|--------|--------|
| Commodity                 | Unit                        | 2013   | 2014   | 2015   | 2016   | 2017   | Foreca 2018 | <u>sts</u><br>2019 | 2020   | 2025   |
| Energy                    |                             |        |        |        |        |        |             |                    |        |        |
| Coal, Australia           | \$/mt                       | 79.7   | 66.2   | 54.4   | 47.4   | 47.5   | 47.6        | 47.7               | 47.8   | 48.1   |
| Crude oil, average        | \$/bbl                      | 98.1   | 90.9   | 48.0   | 40.0   | 48.6   | 53.9        | 55.5               | 57.1   | 66.3   |
| Natural gas, Europe       | \$/mmbtu                    | 11.11  | 9.49   | 6.87   | 4.18   | 4.38   | 4.60        | 4.83               | 5.06   | 6.42   |
| Natural gas, US           | \$/mmbtu                    | 3.52   | 4.13   | 2.47   | 2.14   | 2.74   | 3.15        | 3.26               | 3.38   | 4.01   |
| Natural gas, Japan        | \$/mmbtu                    | 15.04  | 15.15  | 9.85   | 6.50   | 6.66   | 6.82        | 6.98               | 7.15   | 8.02   |
| Non-Energy<br>Agriculture |                             |        |        |        |        |        |             |                    |        |        |
| Beverages                 | ¢/ka                        | 2.30   | 2.89   | 2.97   | 2.88   | 2.77   | 2.66        | 2.55               | 2.46   | 2.01   |
| Cocoa<br>Coffee, Arabica  | <mark>\$/kg</mark><br>\$/kg | 2.30   | 4.18   | 3.34   | 3.11   | 3.08   | 3.04        | 3.01               | 2.40   | 2.01   |
| Coffee, Robusta           | \$/kg                       | 1.96   | 2.09   | 1.84   | 1.58   | 1.57   | 1.57        | 1.56               | 1.56   | 1.52   |
| Tea, avgerage             | \$/kg                       | 2.70   | 2.57   | 2.56   | 2.42   | 2.42   | 2.43        | 2.44               | 2.45   | 2.49   |
| Food<br>Oils and Meals    | <i>•••••</i> 9              |        |        | 2.00   |        |        |             |                    | 2      | 2      |
| Coconut oil               | \$/mt                       | 887    | 1,209  | 1,050  | 1,301  | 1,233  | 1,169       | 1,108              | 1,051  | 802    |
| Groundnut oil             | \$/mt                       | 1,672  | 1,240  | 1,265  | 1,394  | 1,390  | 1,387       | 1,385              | 1,382  | 1,363  |
| Palm oil                  | \$/mt                       | 808    | 776    | 589    | 604    | 608    | 612         | 617                | 621    | 642    |
| Soybean meal              | \$/mt                       | 514    | 499    | 374    | 353    | 356    | 360         | 364                | 367    | 385    |
| Soybean oil               | \$/mt                       | 996    | 859    | 716    | 720    | 729    | 738         | 747                | 756    | 802    |
| Soybeans                  | \$/mt                       | 508    | 464    | 370    | 381    | 385    | 389         | 393                | 397    | 417    |
| Grains                    |                             |        |        |        |        |        |             |                    |        |        |
| Barley                    | \$/mt                       | 191    | 130    | 184    | 167    | 166    | 166         | 165                | 164    | 160    |
| Maize                     | \$/mt                       | 245    | 182    | 161    | 153    | 156    | 158         | 161                | 163    | 176    |
| Rice, Thailand, 5%        | \$/mt                       | 477    | 399    | 365    | 372    | 367    | 362         | 357                | 352    | 329    |
| Wheat, US, HRW            | \$/mt                       | 294    | 269    | 194    | 167    | 172    | 177         | 182                | 188    | 217    |
| Other Food                |                             |        |        |        |        |        |             |                    |        |        |
| Bananas, US               | \$/kg                       | 0.87   | 0.88   | 0.91   | 0.93   | 0.91   | 0.88        | 0.86               | 0.84   | 0.74   |
| Meat, beef                | \$/kg                       | 3.84   | 4.67   | 4.19   | 3.62   | 3.59   | 3.57        | 3.54               | 3.51   | 3.37   |
| Meat, chicken             | \$/kg                       | 2.16   | 2.29   | 2.39   | 2.32   | 2.25   | 2.19        | 2.12               | 2.06   | 1.76   |
| Oranges                   | \$/kg                       | 0.91   | 0.74   | 0.64   | 0.70   | 0.70   | 0.71        | 0.72               | 0.73   | 0.76   |
| Shrimp                    | \$/kg                       | 13.05  | 16.29  | 13.59  | 10.22  | 10.24  | 10.27       | 10.30              | 10.32  | 10.43  |
| Sugar, World              | \$/kg                       | 0.37   | 0.35   | 0.28   | 0.33   | 0.32   | 0.32        | 0.32               | 0.32   | 0.30   |
| Raw Materials<br>Timber   |                             |        |        |        |        |        |             |                    |        |        |
| Logs, Africa              | \$/cum                      | 437    | 439    | 368    | 362    | 366    | 371         | 375                | 380    | 401    |
| Logs, S.E. Asia           | \$/cum                      | 288    | 266    | 233    | 246    | 249    | 252         | 255                | 258    | 273    |
| Sawnwood, S.E. Asia       | \$/cum                      | 804    | 848    | 789    | 734    | 741    | 749         | 757                | 764    | 802    |
| Other Raw Materials       |                             |        |        |        |        |        |             |                    |        |        |
| Cotton                    | \$/kg                       | 1.88   | 1.73   | 1.47   | 1.44   | 1.47   | 1.51        | 1.54               | 1.58   | 1.76   |
| Rubber, RSS3              | \$/kg                       | 2.63   | 1.85   | 1.48   | 1.39   | 1.44   | 1.48        | 1.53               | 1.58   | 1.84   |
| Tobacco                   | \$/mt                       | 4,327  | 4,714  | 4,646  | 4,645  | 4,517  | 4,393       | 4,274              | 4,158  | 3,609  |
| Fertilizers               |                             |        |        |        |        |        |             |                    |        |        |
| DAP                       | \$/mt                       | 419    | 446    | 434    | 330    | 332    | 335         | 338                | 340    | 353    |
| Phosphate rock            | \$/mt                       | 140    | 104    | 111    | 110    | 107    | 104         | 102                | 100    | 88     |
| Potassium chloride        | \$/mt                       | 357    | 281    | 287    | 251    | 251    | 250         | 250                | 250    | 249    |
| TSP                       | \$/mt                       | 360    | 367    | 364    | 279    | 280    | 281         | 282                | 284    | 289    |
| Urea, E. Europe           | \$/mt                       | 321    | 299    | 258    | 186    | 190    | 194         | 198                | 202    | 225    |
| Metals and Minerals       |                             |        |        |        |        |        |             |                    |        |        |
| Aluminum                  | \$/mt                       | 1,741  | 1,764  | 1,576  | 1,463  | 1,486  | 1,510       | 1,535              | 1,560  | 1,684  |
| Copper                    | \$/mt                       | 6,913  | 6,482  | 5,216  | 4,320  | 4,447  | 4,581       | 4,718              | 4,860  | 5,614  |
| Iron ore                  | \$/dmt                      | 127.6  | 91.6   | 52.8   | 46.5   | 41.1   | 42.4        | 43.7               | 45.0   | 52.1   |
| Lead                      | \$/mt                       | 2,018  | 1,979  | 1,692  | 1,649  | 1,670  | 1,691       | 1,713              | 1,736  | 1,845  |
| Nickel                    | \$/mt                       | 14,173 | 15,955 | 11,228 | 8,547  | 9,166  | 9,834       | 10,552             | 11,322 | 16,041 |
| Tin                       | \$/mt                       | 21,010 | 20,683 | 15,207 | 15,422 | 15,654 | 15,896      | 16,144             | 16,395 | 17,645 |
| Zinc                      | \$/mt                       | 1,801  | 2,041  | 1,828  | 1,719  | 2,011  | 2,001       | 1,991              | 1,981  | 1,925  |
| Precious Metals           |                             |        |        |        |        |        |             |                    |        |        |
| Gold                      | \$/toz                      | 1,331  | 1,195  | 1,099  | 1,161  | 1,114  | 1,070       | 1,027              | 986    | 802    |
| Silver                    | \$/toz                      | 22.49  | 18.01  | 14.88  | 15.79  | 15.43  | 15.09       | 14.75              | 14.42  | 12.83  |
| Platinum                  | \$/toz                      | 1,402  | 1,307  | 997    | 929    | 956    | 984         | 1,013              | 1,044  | 1,203  |

*Sources and Notes*: See Appendix C. Next update: October 2016.

### TABLE A.4 Commodity price index forecasts (2010=100)

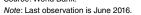
| Commodity                                                                                                                                                                                                                                                                                     | Unit              |                                                                                                                                                               |                                                                                                                                               |                                                                                                                                          |                                                                                                              |                                                                                                              | Foreca                                                                                                       | sts                                                                                                          |                                                                                                              |                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Commodity                                                                                                                                                                                                                                                                                     | Unit              | 2013                                                                                                                                                          | 2014                                                                                                                                          | 2015                                                                                                                                     | 2016                                                                                                         | 2017                                                                                                         | 2018                                                                                                         | 2019                                                                                                         | 2020                                                                                                         | 202                                                                                            |
| Nominal US dollars                                                                                                                                                                                                                                                                            | (2010=100)        |                                                                                                                                                               |                                                                                                                                               |                                                                                                                                          |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                |
| Energy                                                                                                                                                                                                                                                                                        |                   | 127.4                                                                                                                                                         | 118.3                                                                                                                                         | 64.9                                                                                                                                     | 54.3                                                                                                         | 66.3                                                                                                         | 74.3                                                                                                         | 77.8                                                                                                         | 81.4                                                                                                         | 102                                                                                            |
| Non-energy                                                                                                                                                                                                                                                                                    |                   | 101.7                                                                                                                                                         | 97.0                                                                                                                                          | 82.4                                                                                                                                     | 79.1                                                                                                         | 80.7                                                                                                         | 82.5                                                                                                         | 84.4                                                                                                         | 86.3                                                                                                         | 97                                                                                             |
| Agriculture                                                                                                                                                                                                                                                                                   |                   | 106.3                                                                                                                                                         | 102.7                                                                                                                                         | 89.3                                                                                                                                     | 88.6                                                                                                         | 90.0                                                                                                         | 91.4                                                                                                         | 92.9                                                                                                         | 94.4                                                                                                         | 103                                                                                            |
| Beverages                                                                                                                                                                                                                                                                                     |                   | 83.3                                                                                                                                                          | 101.8                                                                                                                                         | 93.5                                                                                                                                     | 89.6                                                                                                         | 89.3                                                                                                         | 89.1                                                                                                         | 88.8                                                                                                         | 88.6                                                                                                         | 88                                                                                             |
| Food                                                                                                                                                                                                                                                                                          |                   | 115.6                                                                                                                                                         | 107.4                                                                                                                                         | 90.9                                                                                                                                     | 91.2                                                                                                         | 92.7                                                                                                         | 94.3                                                                                                         | 95.9                                                                                                         | 97.6                                                                                                         | 106                                                                                            |
| Oils and meals                                                                                                                                                                                                                                                                                |                   | 115.9                                                                                                                                                         | 109.0                                                                                                                                         | 85.2                                                                                                                                     | 87.5                                                                                                         | 89.5                                                                                                         | 91.5                                                                                                         | 93.7                                                                                                         | 95.8                                                                                                         | 107                                                                                            |
| Grains                                                                                                                                                                                                                                                                                        |                   | 128.2                                                                                                                                                         | 103.9                                                                                                                                         | 88.8                                                                                                                                     | 85.5                                                                                                         | 87.7                                                                                                         | 90.0                                                                                                         | 92.4                                                                                                         | 94.9                                                                                                         | 108                                                                                            |
| Other food                                                                                                                                                                                                                                                                                    |                   | 103.9                                                                                                                                                         | 108.4                                                                                                                                         | 100.3                                                                                                                                    | 101.3                                                                                                        | 101.5                                                                                                        | 101.7                                                                                                        | 101.9                                                                                                        | 102.2                                                                                                        | 103                                                                                            |
| Raw materials                                                                                                                                                                                                                                                                                 |                   | 95.4                                                                                                                                                          | 91.9                                                                                                                                          | 83.2                                                                                                                                     | 81.8                                                                                                         | 83.7                                                                                                         | 85.7                                                                                                         | 87.7                                                                                                         | 89.9                                                                                                         | 101                                                                                            |
| Timber                                                                                                                                                                                                                                                                                        |                   | 102.6                                                                                                                                                         | 104.9                                                                                                                                         | 96.1                                                                                                                                     | 93.6                                                                                                         | 96.1                                                                                                         | 98.7                                                                                                         | 101.4                                                                                                        | 104.1                                                                                                        | 118                                                                                            |
| Other Raw Mater                                                                                                                                                                                                                                                                               | ials              | 87.6                                                                                                                                                          | 77.8                                                                                                                                          | 69.2                                                                                                                                     | 69.0                                                                                                         | 70.2                                                                                                         | 71.5                                                                                                         | 72.8                                                                                                         | 74.3                                                                                                         | 82                                                                                             |
| Fertilizers                                                                                                                                                                                                                                                                                   |                   | 113.7                                                                                                                                                         | 100.5                                                                                                                                         | 95.4                                                                                                                                     | 78.2                                                                                                         | 79.8                                                                                                         | 81.4                                                                                                         | 83.1                                                                                                         | 84.8                                                                                                         | 94                                                                                             |
| Metals and minerals                                                                                                                                                                                                                                                                           | ;*                | 90.8                                                                                                                                                          | 84.8                                                                                                                                          | 66.9                                                                                                                                     | 59.6                                                                                                         | 61.7                                                                                                         | 64.3                                                                                                         | 67.0                                                                                                         | 69.8                                                                                                         | 86                                                                                             |
| Base Metals **                                                                                                                                                                                                                                                                                |                   | 90.3                                                                                                                                                          | 89.0                                                                                                                                          | 73.6                                                                                                                                     | 65.5                                                                                                         | 68.9                                                                                                         | 71.7                                                                                                         | 74.7                                                                                                         | 77.8                                                                                                         | 95                                                                                             |
|                                                                                                                                                                                                                                                                                               |                   | 115.1                                                                                                                                                         | 101.1                                                                                                                                         | 90.6                                                                                                                                     | 97.4                                                                                                         | 95.4                                                                                                         | 93.5                                                                                                         | 91.7                                                                                                         | 89.9                                                                                                         | 81                                                                                             |
|                                                                                                                                                                                                                                                                                               | ollars (2010=100) | , deflated by                                                                                                                                                 | y the MU                                                                                                                                      | / Index                                                                                                                                  | 50.4                                                                                                         | 60.6                                                                                                         | 66.8                                                                                                         | 68.9                                                                                                         | 70.9                                                                                                         | 82                                                                                             |
| Constant 2010 US do                                                                                                                                                                                                                                                                           | ollars (2010=100) | , deflated by                                                                                                                                                 | y the MU                                                                                                                                      | / Index                                                                                                                                  | 50.4                                                                                                         | 00.0                                                                                                         | 00.0                                                                                                         | 00.0                                                                                                         | 70.0                                                                                                         | 00                                                                                             |
| Constant 2010 US do<br>Energy                                                                                                                                                                                                                                                                 | ollars (2010=100) |                                                                                                                                                               |                                                                                                                                               | / Index<br>61.4                                                                                                                          | 50.4<br>73.5                                                                                                 | 60.6<br>73.8                                                                                                 | 66.8<br>74.2                                                                                                 | <mark>68.9</mark><br>74.7                                                                                    | 70.9<br>75.2                                                                                                 | <mark>82</mark> .<br>78.                                                                       |
| Constant 2010 US do<br>Energy<br>Non-energy                                                                                                                                                                                                                                                   | ollars (2010=100) | , deflated by 120.1                                                                                                                                           | y the MU<br>111.7                                                                                                                             | / Index                                                                                                                                  |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              | 78.                                                                                            |
| Constant 2010 US do<br>Energy                                                                                                                                                                                                                                                                 | ollars (2010=100) | , deflated by<br>120.1<br>95.9                                                                                                                                | <b>y the MU</b><br><u>111.7</u><br>91.6                                                                                                       | / Index<br>61.4<br>78.0                                                                                                                  | 73.5                                                                                                         | 73.8                                                                                                         | 74.2                                                                                                         | 74.7                                                                                                         | 75.2                                                                                                         | 78.<br>82.                                                                                     |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture                                                                                                                                                                                                                                    | ollars (2010=100) | , deflated by<br>120.1<br>95.9<br>100.2                                                                                                                       | y the MU<br>111.7<br>91.6<br>97.0                                                                                                             | / Index<br>61.4<br>78.0<br>84.5                                                                                                          | 73.5<br>82.3                                                                                                 | 73.8<br>82.3                                                                                                 | 74.2<br>82.2                                                                                                 | 74.7<br>82.3                                                                                                 | 75.2<br>82.3                                                                                                 | 78<br>82<br>70                                                                                 |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages                                                                                                                                                                                                                       | ollars (2010=100) | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5                                                                                                               | y the MU<br>111.7<br>91.6<br>97.0<br>96.1                                                                                                     | / Index<br>61.4<br>78.0<br>84.5<br>88.5                                                                                                  | 73.5<br>82.3<br>83.3                                                                                         | 73.8<br>82.3<br>81.7                                                                                         | 74.2<br>82.2<br>80.1                                                                                         | 74.7<br>82.3<br>78.7                                                                                         | 75.2<br>82.3<br>77.2                                                                                         |                                                                                                |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food                                                                                                                                                                                                               | ollars (2010=100) | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0                                                                                                      | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4                                                                                            | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0                                                                                          | 73.5<br>82.3<br>83.3<br>84.7                                                                                 | 73.8<br>82.3<br>81.7<br>84.7                                                                                 | 74.2<br>82.2<br>80.1<br>84.8                                                                                 | 74.7<br>82.3<br>78.7<br>84.9                                                                                 | 75.2<br>82.3<br>77.2<br>85.0                                                                                 | 78.<br>82.<br>70.<br>85.<br>86.                                                                |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals                                                                                                                                                                                             | ollars (2010=100) | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3                                                                                             | y the MUV<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0                                                                                  | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6                                                                                  | 73.5<br>82.3<br>83.3<br>84.7<br>81.3                                                                         | 73.8<br>82.3<br>81.7<br>84.7<br>81.8                                                                         | 74.2<br>82.2<br>80.1<br>84.8<br>82.3                                                                         | 74.7<br>82.3<br>78.7<br>84.9<br>82.9                                                                         | 75.2<br>82.3<br>77.2<br>85.0<br>83.5                                                                         | 78.<br>82.<br>70.<br>85.<br>86.<br>87.                                                         |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains                                                                                                                                                                                   | ollars (2010=100) | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9                                                                                    | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1                                                                           | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>80.6<br>84.0                                                                  | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4                                                                 | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2                                                                 | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0                                                                 | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8                                                                 | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7                                                                 | 78.<br>82.<br>70.<br>85.<br>86.<br>87.<br>83.                                                  |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food                                                                                                                                                                     | ollars (2010=100) | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0                                                                            | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3                                                                  | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>80.6<br>84.0<br>94.9                                                          | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1                                                         | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8                                                         | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5                                                         | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3                                                         | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1                                                         | 78.<br>82.<br>70.<br>85.<br>86.<br>87.<br>83.<br>83.                                           |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials                                                                                                                                                    |                   | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0                                                                    | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8                                                          | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8                                                          | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0                                                 | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5                                                 | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1                                                 | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7                                                 | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3                                                 | 78<br>82<br>70<br>85<br>86<br>87<br>83<br>83<br>81<br>95                                       |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber                                                                                                                                          |                   | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>96.7                                                            | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0                                                  | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9                                                  | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0                                         | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8                                         | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8                                         | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7                                         | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7                                         | 78<br>82<br>70<br>85<br>86<br>87<br>83<br>83<br>81<br>95<br>66                                 |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater                                                                                                                       | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6                                            | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5                                          | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5                                          | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1                                 | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1                                 | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3                                 | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5                                 | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7                                 | 78<br>82<br>70<br>85<br>86<br>87<br>83<br>81<br>95<br>66<br>75                                 |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater<br>Fertilizers                                                                                                        | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6<br>107.2                                   | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5<br>94.9                                  | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5<br>90.3                                  | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1<br>72.7                         | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1<br>72.9                         | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3<br>73.2                         | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5<br>73.6                         | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7<br>73.9                         | 78<br>82<br>70<br>85<br>86<br>87<br>83<br>81<br>95<br>66<br>75<br>69                           |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater<br>Fertilizers<br>Metals and minerals                                                                                 | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6<br>107.2<br>85.6                           | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5<br>94.9<br>80.1                          | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5<br>90.3<br>63.4                          | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1<br>72.7<br>55.4                 | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1<br>72.9<br>56.4                 | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3<br>73.2<br>57.8                 | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5<br>73.6<br>59.3                 | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7<br>73.9<br>60.8                 | 78.<br>82.<br>70.<br>85.<br>86.<br>87.<br>83.<br>81.<br>95.<br>66.<br>75.<br>69.<br>76.        |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater<br>Fertilizers<br>Metals and minerals<br>Base Metals **                                                               | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6<br>107.2<br>85.6<br>85.2                   | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5<br>94.9<br>80.1<br>84.1                  | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5<br>90.3<br>63.4<br>69.7                  | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1<br>72.7<br>55.4<br>60.8         | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1<br>72.9<br>56.4<br>63.0         | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3<br>73.2<br>57.8<br>64.5         | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5<br>73.6<br>59.3<br>66.1         | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7<br>73.9<br>60.8<br>67.8         | 78.<br>82.<br>70.<br>85.<br>86.<br>87.<br>83.<br>81.<br>95.<br>66.<br>75.<br>69.<br>76.        |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater<br>Fertilizers<br>Metals and minerals<br>Base Metals **<br>Precious Metals<br>Inflation indices, 201                  | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6<br>107.2<br>85.6<br>85.2                   | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5<br>94.9<br>80.1<br>84.1                  | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5<br>90.3<br>63.4<br>69.7                  | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1<br>72.7<br>55.4<br>60.8         | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1<br>72.9<br>56.4<br>63.0         | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3<br>73.2<br>57.8<br>64.5         | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5<br>73.6<br>59.3<br>66.1         | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7<br>73.9<br>60.8<br>67.8         | 78<br>82<br>70<br>85<br>86<br>87<br>83<br>81<br>95<br>66<br>75<br>69<br>76<br>69               |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater<br>Fertilizers<br>Metals and minerals<br>Base Metals **<br>Precious Metals<br>Inflation indices, 201                  | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6<br>107.2<br>85.6<br>85.2<br>108.5          | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5<br>94.9<br>80.1<br>84.1<br>95.5          | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5<br>90.3<br>63.4<br>69.7<br>85.8          | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1<br>72.7<br>55.4<br>60.8<br>90.5 | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1<br>72.9<br>56.4<br>63.0<br>87.2 | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3<br>73.2<br>57.8<br>64.5<br>84.1 | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5<br>73.6<br>59.3<br>66.1<br>81.2 | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7<br>73.9<br>60.8<br>67.8<br>78.3 | 78.<br>82.<br>70.<br>85.<br>86.<br>87.<br>83.<br>81.<br>95.<br>66.<br>75.<br>69.<br>76.<br>65. |
| Constant 2010 US do<br>Energy<br>Non-energy<br>Agriculture<br>Beverages<br>Food<br>Oils and meals<br>Grains<br>Other food<br>Raw materials<br>Timber<br>Other Raw Mater<br>Fertilizers<br>Metals and minerals<br>Base Metals **<br>Precious Metals<br>Inflation indices, 201<br>MUV index *** | ials              | , deflated by<br>120.1<br>95.9<br>100.2<br>78.5<br>109.0<br>109.3<br>120.9<br>98.0<br>90.0<br>90.0<br>96.7<br>82.6<br>107.2<br>85.6<br>85.2<br>108.5<br>108.5 | y the MU<br>111.7<br>91.6<br>97.0<br>96.1<br>101.4<br>103.0<br>98.1<br>102.3<br>86.8<br>99.0<br>73.5<br>94.9<br>80.1<br>84.1<br>95.5<br>105.9 | / Index<br>61.4<br>78.0<br>84.5<br>88.5<br>86.0<br>80.6<br>84.0<br>94.9<br>78.8<br>90.9<br>65.5<br>90.3<br>63.4<br>69.7<br>85.8<br>105.7 | 73.5<br>82.3<br>83.3<br>84.7<br>81.3<br>79.4<br>94.1<br>76.0<br>87.0<br>64.1<br>72.7<br>55.4<br>60.8<br>90.5 | 73.8<br>82.3<br>81.7<br>84.7<br>81.8<br>80.2<br>92.8<br>76.5<br>87.8<br>64.1<br>72.9<br>56.4<br>63.0<br>87.2 | 74.2<br>82.2<br>80.1<br>84.8<br>82.3<br>81.0<br>91.5<br>77.1<br>88.8<br>64.3<br>73.2<br>57.8<br>64.5<br>84.1 | 74.7<br>82.3<br>78.7<br>84.9<br>82.9<br>81.8<br>90.3<br>77.7<br>89.7<br>64.5<br>73.6<br>59.3<br>66.1<br>81.2 | 75.2<br>82.3<br>77.2<br>85.0<br>83.5<br>82.7<br>89.1<br>78.3<br>90.7<br>64.7<br>73.9<br>60.8<br>67.8<br>78.3 | 78.<br>82.<br>70.<br>85.                                                                       |

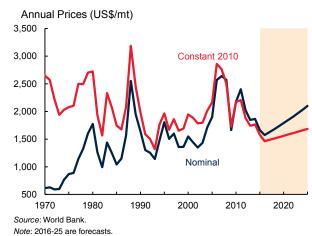
Source: See Appendix C.

Notes: (\*) Base metals plus iron ore; (\*\*) Includes aluminum, copper, lead, nickel, tin and zinc; (\*\*\*) MUV is the unit value index of manufacture exports. For other notes see Appendix C.

Next update: October 2016.




# **APPENDIX B**


## Supply-Demand Balances

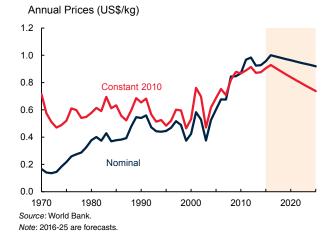
| Aluminum                         | 35 | Natural gas                     | 50 |
|----------------------------------|----|---------------------------------|----|
| Bananas                          | 36 | Natural rubber                  | 51 |
| Coal                             | 37 | Nickel                          | 52 |
| Сосоа                            | 38 | Palm oil and Soybean oil        | 53 |
| Coconut oil and Palm kernel oil  | 39 | Platinum                        | 54 |
| Coffee                           | 40 | Rice                            | 55 |
| Copper                           | 41 | Silver                          | 56 |
| Cotton                           | 42 | Soybeans                        | 57 |
| Crude oil                        | 43 | Sugar                           | 58 |
| Fertilizers—Nitrogen             | 44 | Tea                             | 59 |
| Fertilizers—Phosphate and Potash | 45 | Timber—Roundwood and Sawnwood   | 60 |
| Gold                             | 46 | Timber—Wood panels and Woodpulp | 61 |
| Iron Ore                         | 47 | Tin                             | 62 |
| Lead                             | 48 | Wheat                           | 63 |
| Maize                            | 49 | Zinc                            | 64 |
|                                  |    |                                 |    |

### Aluminum








|                         | 1980      | 1990       | 2000    | 2005    | 2010    | 2012    | 2013    | 2014    | 2015    |
|-------------------------|-----------|------------|---------|---------|---------|---------|---------|---------|---------|
| Bauxite Production (the | ousand me | tric tons) |         |         |         |         |         |         |         |
| Australia               | 27,179    | 40,697     | 53,801  | 59,959  | 68,535  | 76,282  | 81,119  | 78,633  | 80,910  |
| China                   | 1,700     | 3,655      | 7,900   | 17,408  | 36,837  | 44,052  | 50,339  | 65,000  | 65,000  |
| Brazil                  | 4,152     | 9,876      | 14,379  | 22,365  | 32,028  | 34,988  | 33,849  | 35,410  | 31,231  |
| India                   | 1,785     | 5,277      | 7,562   | 12,385  | 12,662  | 15,320  | 20,421  | 20,688  | 26,383  |
| Malaysia                | 920       | 398        | 123     | 5       | 124     | 122     | 220     | 963     | 22,867  |
| Guinea                  | 13,911    | 16,150     | 17,992  | 19,237  | 17,633  | 19,974  | 18,763  | 19,178  | 20,414  |
| Jamaica                 | 12,064    | 10,937     | 11,127  | 14,118  | 8,540   | 9,339   | 9,435   | 9,677   | 9,629   |
| Russian Federation      | n/a       | n/a        | 5,000   | 6,409   | 5,475   | 5,166   | 5,322   | 5,589   | 6,580   |
| Kazakhstan              | n/a       | n/a        | 3,729   | 4,815   | 5,310   | 5,170   | 5,193   | 4,515   | 4,683   |
| Greece                  | 3,286     | 2,496      | 1,991   | 2,495   | 1,902   | 1,815   | 1,844   | 1,876   | 2,100   |
| Saudi Arabia            | n/a       | n/a        | 0       | 0       | 0       | 760     | 1,044   | 1,965   | 1,964   |
| Surinam                 | 4,903     | 3,267      | 3,610   | 4,757   | 3,097   | 2,873   | 2,706   | 2,708   | 1,871   |
| Venezuela, RB           | 0         | 786        | 4,361   | 5,815   | 3,126   | 2,285   | 2,341   | 2,316   | 1,770   |
| Others                  | n/a       | n/a        | 7,315   | 7,038   | 33,532  | 39,538  | 64,212  | 11,775  | 10,080  |
| World                   | 93,326    | 114,835    | 138,889 | 176,807 | 228,802 | 257,685 | 296,808 | 260,291 | 285,483 |
| Refined Production (th  | ousand me | tric tons) |         |         |         |         |         |         |         |
| China                   | 358       | 854        | 2,647   | 7,759   | 16,244  | 20,251  | 23,153  | 27,517  | 31,410  |
| Russian Federation      | n/a       | n/a        | 3,258   | 3,647   | 3,947   | 4,024   | 3,724   | 3,488   | 3,524   |
| Canada                  | 1,075     | 1,567      | 2,373   | 2,894   | 2,963   | 2,781   | 2,967   | 2,858   | 2,880   |
| United Arab Emirates    | 35        | 174        | 536     | 722     | 1,400   | 1,861   | 1,848   | 2,296   | 2,464   |
| India                   | 185       | 433        | 647     | 942     | 1,610   | 1,714   | 1,597   | 1,767   | 1,886   |
| Australia               | 304       | 1,233      | 1,761   | 1,903   | 1,928   | 1,864   | 1,778   | 1,704   | 1,645   |
| United States           | 4,654     | 4,048      | 3,668   | 2,480   | 1,728   | 2,070   | 1,948   | 1,710   | 1,587   |
| Norway                  | 662       | 867        | 1,026   | 1,376   | 1,090   | 1,111   | 1,155   | 1,331   | 1,241   |
| Bahrain                 | 126       | 212        | 509     | 708     | 851     | 890     | 913     | 931     | 961     |
| Saudi Arabia            | 0         | 0          | 0       | 0       | 0       | 0       | 187     | 665     | 835     |
| Brazil                  | 261       | 931        | 1,271   | 1,498   | 1,536   | 1,436   | 1,304   | 962     | 773     |
| Iceland                 | 75        | 88         | 226     | 272     | 826     | 803     | 736     | 749     | 756     |
| South Africa            | 87        | 157        | 683     | 851     | 806     | 665     | 822     | 745     | 695     |
| Others                  | n/a       | n/a        | 5,699   | 6,788   | 6,630   | 6,766   | 6,569   | 6,526   | 6,686   |
| World                   | 16,036    | 19,362     | 24,304  | 31,841  | 41,559  | 46,236  | 48,701  | 53,249  | 57,342  |
| Refined Consumption     | thousand  | metric ton | s)      |         |         |         |         |         |         |
| China                   | 550       | 861        | 3,352   | 7,072   | 15,854  | 20,224  | 21,955  | 27,204  | 31,068  |
| United States           | 4,454     | 4,330      | 6,161   | 6,114   | 4,242   | 4,875   | 4,632   | 5,250   | 5,325   |
| Germany                 | 1,272     | 1,379      | 1,632   | 1,758   | 1,912   | 2,086   | 2,083   | 2,289   | 2,126   |
| Japan                   | 1,639     | 2,414      | 2,223   | 2,276   | 2,025   | 1,982   | 1,772   | 2,034   | 1,779   |
| India                   | 234       | 433        | 601     | 958     | 1,475   | 1,690   | 1,559   | 1,523   | 1,476   |
| Korea, Rep.             | 68        | 369        | 823     | 1,201   | 1,255   | 1,278   | 1,241   | 1,282   | 1,366   |
| Turkey                  | 45        | 152        | 211     | 390     | 703     | 925     | 867     | 915     | 952     |
| United Arab Emirates    | 0         | 0          | 34      | 85      | 650     | 835     | 835     | 835     | 835     |
| Brazil                  | 296       | 341        | 514     | 759     | 985     | 1,021   | 988     | 1,027   | 801     |
| Others                  | 6,754     | 8,947      | 9,456   | 11,022  | 11,317  | 11,013  | 10,563  | 10,945  | 11,353  |
| World                   | 15,312    | 19,227     | 25,007  | 31,636  | 40,419  | 45,929  | 46,495  | 53,305  | 57,080  |

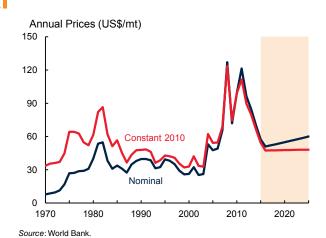
Source: World Bureau of Metal Statistics.

Note: n/a implies data not available.

#### **Bananas**






Note: Last observation is June 2016.

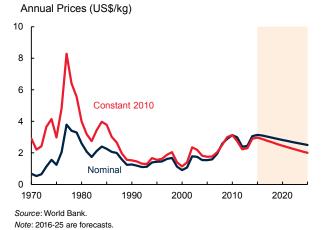
|                      | 1993         | 1995   | 2000   | 2005   | 2008   | 2009   | 2010   | 2011   | 201   |
|----------------------|--------------|--------|--------|--------|--------|--------|--------|--------|-------|
| ross exports (thousa | nd metric to | ns)    |        |        |        |        |        |        |       |
| Ecuador              | 2,582        | 3,737  | 3,940  | 4,654  | 5,133  | 5,473  | 4,945  | 5,392  | 4,98  |
| Philippines          | 1,154        | 1,213  | 1,599  | 2,024  | 2,193  | 1,664  | 1,590  | 2,056  | 2,64  |
| Costa Rica           | 1,833        | 2,033  | 1,883  | 1,615  | 1,873  | 1,588  | 1,821  | 1,902  | 2,02  |
| Guatemala            | 432          | 636    | 801    | 1,046  | 1,355  | 1,406  | 1,369  | 1,559  | 1,92  |
| Colombia             | 1,502        | 1,336  | 1,680  | 1,622  | 1,798  | 2,102  | 1,803  | 1,915  | 1,83  |
| Honduras             | 831          | 522    | 375    | 501    | 606    | 520    | 512    | 517    | 90    |
| Côte d'Ivoire        | 173          | 173    | 217    | 234    | 264    | 257    | 336    | 320    | 33    |
| Mexico               | 295          | 169    | 46     | 70     | 75     | 140    | 174    | 178    | 30    |
| Dominican Republic   | 73           | 94     | 80     | 167    | 192    | 282    | 340    | 304    | 29    |
| Cameroon             | 120          | 171    | 238    | 266    | 269    | 256    | 233    | 249    | 24    |
| Panama               | 708          | 693    | 489    | 348    | 367    | 257    | 272    | 267    | 24    |
| Peru                 | n/a          | n/a    | 1      | 43     | 78     | 83     | 89     | 109    | 12    |
| Belize               | 43           | 52     | 66     | 76     | 83     | 82     | 79     | 84     | 9     |
| Brazil               | 90           | 13     | 72     | 212    | 131    | 144    | 140    | 110    | 9     |
| Suriname             | 29           | 34     | 35     | 40     | 65     | 57     | 79     | 63     | ;     |
| Bolivia              | n/a          | n/a    | 9      | 54     | 86     | 89     | 88     | 98     |       |
| Pakistan             | 3            | 2      | 2      | 9      | 13     | 87     | 58     | 59     | !     |
| Ghana                | n/a          | n/a    | 4      | 2      | 70     | 48     | 68     | 58     | :     |
| India                | n/a          | n/a    | 9      | 14     | 28     | 46     | 61     | 40     | :     |
| Thailand             | 2            | 2      | 6      | 42     | 23     | 26     | 23     | 25     | :     |
| Others               | 545          | 63     | 369    | 256    | 173    | 166    | 100    | 75     |       |
| World                | 10,416       | 11,424 | 11,922 | 13,294 | 14,872 | 14,771 | 14,180 | 15,378 | 16,49 |
| et imports (thousand | metric tons  | )      |        |        |        |        |        |        |       |
| European Union       | 3,217        | 3,125  | 3,890  | 3,923  | 4,877  | 4,537  | 4,509  | 4,603  | 4,48  |
| United States        | 3,133        | 3,266  | 3,630  | 3,373  | 3,453  | 3,061  | 3,611  | 4,123  | 4,3   |
| Russian Federation   | 19           | 503    | 500    | 853    | 989    | 969    | 1,069  | 1,308  | 1,2   |
| Japan                | 913          | 874    | 1,079  | 1,067  | 1,093  | 1,253  | 1,109  | 1,064  | 1,08  |
| China                | 30           | 160    | 642    | 414    | 421    | 554    | 741    | 910    | 71    |
| Canada               | 383          | 400    | 398    | 449    | 478    | 482    | 496    | 507    | 52    |
| Argentina            | 459          | 412    | 340    | 302    | 347    | 344    | 351    | 395    | 3     |
| Korea, Rep.          | 146          | 122    | 184    | 253    | 258    | 257    | 338    | 353    | 30    |
| Iran, Islamic Rep.   | 172          | 120    | 200    | 451    | 752    | 713    | 640    | 591    | 3     |
| Saudi Arabia         | 145          | 167    | 187    | 233    | 257    | 252    | 307    | 306    | 3     |
| Syrian Arab Republic | 0            | 53     | 69     | 112    | 220    | 184    | 232    | 272    | 29    |
| Ukraine              | 0            | 12     | 60     | 249    | 278    | 227    | 215    | 248    | 2     |
| Algeria              | n/a          | n/a    | 0      | 157    | 164    | 180    | 208    | 245    | 2     |
| Turkey               | 113          | 88     | 124    | 151    | 219    | 182    | 201    | 235    | 2     |
| Chile                | 139          | 145    | 193    | 195    | 175    | 179    | 176    | 184    | 1     |
| Kuwait               | 19           | 22     | 23     | 31     | 96     | 93     | 91     | 131    | 1     |
| United Arab Emirates | 39           | 45     | 69     | 175    | 127    | 85     | 93     | 129    | 1     |
| New Zealand          | 65           | 72     | 68     | 78     | 80     | 76     | 81     | 81     |       |
| Switzerland          | 76           | 75     | 72     | 74     | 82     | 81     | 80     | 79     |       |
| Norway               | 61           | 60     | 60     | 73     | 84     | 81     | 79     | 78     |       |
| Others               | 517          | 735    | 364    | 506    | 654    | 628    | 714    | 742    | 7     |
| World                | 9,645        | 10,544 | 12,151 | 13,120 | 15,102 | 14,418 | 15,340 | 16,582 | 16,2  |

Sources: Food and Agriculture Organization, Intergovernmental Group on Bananas and Tropical Fruits.

Note: n/a implies data not available. European Union includes EU-15 for 1993 and 1995 and EU-27 for 2000-2012.






| <i>ource</i> : World Bank.<br><i>ote</i> : Last observation is June 201 | 6.            |              |        |       | <i>urce</i> : World Bank<br>te: 2016-25 are fo |       |       |       |       |
|-------------------------------------------------------------------------|---------------|--------------|--------|-------|------------------------------------------------|-------|-------|-------|-------|
|                                                                         | 1981          | 1990         | 2000   | 2005  | 2010                                           | 2012  | 2013  | 2014  | 2015  |
| Production (million m                                                   | netric tons o | oil equivale | ent)   |       |                                                |       |       |       |       |
| China                                                                   | 311           | 540          | 707    | 1,242 | 1,665                                          | 1,874 | 1,895 | 1,864 | 1,827 |
| United States                                                           | 463           | 566          | 570    | 580   | 551                                            | 518   | 501   | 508   | 455   |
| India                                                                   | 64            | 106          | 152    | 190   | 252                                            | 255   | 256   | 271   | 284   |
| Australia                                                               | 65            | 109          | 167    | 206   | 241                                            | 250   | 268   | 287   | 275   |
| Indonesia                                                               | 0             | 7            | 47     | 94    | 169                                            | 237   | 276   | 282   | 241   |
| Russian Federation                                                      | n/a           | 186          | 121    | 136   | 151                                            | 168   | 173   | 177   | 184   |
| South Africa                                                            | 75            | 100          | 127    | 138   | 144                                            | 147   | 145   | 148   | 143   |
| Colombia                                                                | 3             | 13           | 25     | 39    | 48                                             | 58    | 56    | 58    | 56    |
| Poland                                                                  | 103           | 100          | 72     | 69    | 55                                             | 58    | 57    | 54    | 54    |
| Kazakhstan                                                              | n/a           | 57           | 32     | 37    | 47                                             | 52    | 51    | 49    | 46    |
| Germany                                                                 | 149           | 125          | 61     | 57    | 46                                             | 48    | 45    | 44    | 43    |
| Canada                                                                  | 23            | 40           | 39     | 35    | 35                                             | 36    | 37    | 36    | 32    |
| Vietnam                                                                 | 3             | 3            | 7      | 19    | 25                                             | 24    | 23    | 23    | 23    |
| Czech Republic                                                          | 43            | 36           | 25     | 24    | 21                                             | 20    | 18    | 17    | 16    |
| Ukraine                                                                 | n/a           | 76           | 36     | 35    | 32                                             | 38    | 37    | 26    | 16    |
| Mongolia                                                                | 2             | 3            | 2      | 4     | 15                                             | 18    | 18    | 15    | 15    |
| Turkey                                                                  | 7             | 12           | 12     | 11    | 18                                             | 17    | 15    | 16    | 12    |
| Serbia                                                                  | n/a           | n/a          | n/a    | n/a   | 7                                              | 7     | 8     | 6     | 7     |
| Mexico                                                                  | 2             | 3            | 5      | 6     | 7                                              | 7     | 7     | 7     | 7     |
| Greece                                                                  | 3             | 7            | 8      | 9     | 7                                              | 8     | 7     | 6     | 6     |
| Bulgaria                                                                | 5             | 5            | 4      | 4     | 5                                              | 6     | 5     | 5     | 6     |
| United Kingdom                                                          | 78            | 56           | 20     | 13    | 11                                             | 11    | 8     | 7     | 5     |
| Romania                                                                 | 8             | 9            | 6      | 7     | 6                                              | 6     | 5     | 4     | 5     |
| Others                                                                  | n/a           | 115          | 79     | 80    | 67                                             | 68    | 77    | 78    | 72    |
| World                                                                   | 1,863         | 2,274        | 2,326  | 3,034 | 3,628                                          | 3,930 | 3,986 | 3,989 | 3,830 |
| Consumption (millior                                                    | n metric ton  | s oil equiv  | alent) |       |                                                |       |       |       |       |
| China                                                                   | 303           | 526          | 701    | 1,318 | 1,743                                          | 1,923 | 1,964 | 1,949 | 1,920 |
| India                                                                   | 64            | 110          | 164    | 211   | 293                                            | 330   | 356   | 389   | 407   |
| United States                                                           | 401           | 483          | 569    | 574   | 525                                            | 438   | 455   | 454   | 396   |
| Japan                                                                   | 65            | 78           | 95     | 114   | 116                                            | 116   | 121   | 119   | 119   |
| Russian Federation                                                      | n/a           | 182          | 106    | 95    | 91                                             | 98    | 91    | 88    | 89    |
| South Africa                                                            | 51            | 67           | 75     | 80    | 93                                             | 88    | 89    | 90    | 85    |
| Korea, Rep.                                                             | 15            | 24           | 43     | 55    | 76                                             | 81    | 82    | 85    | 84    |
| Indonesia                                                               | 0             | 3            | 13     | 24    | 39                                             | 53    | 58    | 70    | 80    |
| Germany                                                                 | 144           | 132          | 85     | 81    | 77                                             | 80    | 83    | 79    | 78    |
| Poland                                                                  | 91            | 78           | 56     | 55    | 55                                             | 51    | 53    | 49    | 50    |
| Australia                                                               | 27            | 37           | 48     | 54    | 51                                             | 47    | 45    | 45    | 47    |
| Taiwan, China                                                           | 4             | 11           | 27     | 35    | 38                                             | 38    | 39    | 39    | 38    |
| Turkey                                                                  | 7             | 16           | 23     | 22    | 31                                             | 36    | 32    | 36    | 34    |
| Kazakhstan                                                              | n/a           | 39           | 18     | 27    | 33                                             | 36    | 36    | 36    | 33    |
| Ukraine                                                                 | n/a           | 75           | 39     | 38    | 38                                             | 43    | 42    | 36    | 29    |
| Others                                                                  | n/a           | 381          | 316    | 346   | 335                                            | 354   | 347   | 349   | 349   |
| World                                                                   | 1,836         | 2,243        | 2,379  | 3,131 | 3,634                                          | 3,814 | 3,891 | 3,911 | 3,840 |

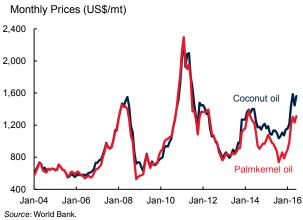
Source: BP Statistical Review.

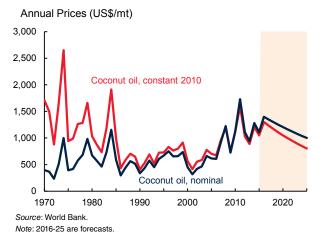
Notes: n/a implies data not available. Production includes crude oil and natural gas liquids but excludes liquid fuels from other sources such as biomass and derivatives of coal and natural gas included in consumption.

### Cocoa






Note: Last observation is June 2016.


|                     | 1970/71      | 1980/81 | 1990/91 | 2000/01 | 2010/11 | 2012/13 | 2013/14 | 2014/15 | 2015/16 |
|---------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Production (thousan | d metric to  | ns)     |         |         |         |         |         |         |         |
| Côte d'Ivoire       | 180          | 417     | 804     | 1,212   | 1,511   | 1,449   | 1,746   | 1,796   | 1,650   |
| Ghana               | 406          | 258     | 293     | 395     | 1,025   | 835     | 897     | 740     | 800     |
| Indonesia           | 2            | 12      | 150     | 385     | 440     | 410     | 375     | 325     | 320     |
| Ecuador             | 72           | 87      | 111     | 89      | 161     | 192     | 234     | 250     | 220     |
| Cameroon            | 112          | 117     | 115     | 133     | 229     | 225     | 211     | 232     | 220     |
| Nigeria             | 305          | 156     | 160     | 180     | 240     | 238     | 248     | 195     | 190     |
| Brazil              | 182          | 353     | 368     | 163     | 200     | 185     | 228     | 230     | 18      |
| Peru                | 2            | 7       | 11      | 17      | 54      | 70      | 82      | 85      | 8       |
| Dominican Republic  | 35           | 35      | 42      | 45      | 54      | 68      | 70      | 82      | 72      |
| Colombia            | 21           | 38      | 52      | 37      | 35      | 48      | 49      | 51      | 5       |
| Others              | 212          | 214     | 400     | 195     | 361     | 223     | 232     | 246     | 25      |
| World               | 1,528        | 1,694   | 2,507   | 2,852   | 4,309   | 3,943   | 4,372   | 4,233   | 4,04    |
| Grindings (thousand | I metric ton | is)     |         |         |         |         |         |         |         |
| Côte d'Ivoire       | 35           | 60      | 118     | 285     | 361     | 471     | 519     | 558     | 54      |
| Netherlands         | 116          | 140     | 268     | 452     | 540     | 545     | 530     | 508     | 51      |
| Germany             | 151          | 180     | 294     | 227     | 439     | 402     | 412     | 415     | 42      |
| United States       | 279          | 186     | 268     | 445     | 401     | 429     | 446     | 398     | 39      |
| Indonesia           | 1            | 10      | 32      | 83      | 190     | 290     | 340     | 335     | 37      |
| Ghana               | 48           | 27      | 30      | 70      | 230     | 225     | 234     | 234     | 23      |
| Others              | 801          | 964     | 1,315   | 1,480   | 1,778   | 1,810   | 1,840   | 1,697   | 1,70    |
| World               | 1,431        | 1,566   | 2,325   | 3,041   | 3,938   | 4,173   | 4,322   | 4,145   | 4,18    |
| Exports (thousand m | netric tons) |         |         |         |         |         |         |         |         |
| Côte d'Ivoire       | 138          | 406     | 688     | 903     | 1,079   | 1,045   | 1,192   | 1,234   | n/      |
| Ghana               | 348          | 182     | 245     | 307     | 694     | 601     | 709     | 586     | n/      |
| Ecuador             | 46           | 19      | 56      | 57      | 136     | 165     | 197     | 235     | n/      |
| Cameroon            | 75           | 96      | 96      | 102     | 204     | 186     | 160     | 205     | n/      |
| Nigeria             | 216          | 76      | 142     | 149     | 219     | 183     | 192     | 113     | n/      |
| Malaysia            | 3            | 40      | 148     | 17      | 21      | 39      | 90      | 71      | n/      |
| Others              | 294          | 282     | 362     | 451     | 643     | 423     | 381     | 365     | n/      |
| World               | 1,119        | 1,100   | 1,737   | 1,987   | 2,996   | 2,643   | 2,920   | 2,807   | n/a     |
| mports (thousand m  | netric tons) |         |         |         |         |         |         |         |         |
| Netherlands         | 116          | 167     | 267     | 549     | 806     | 672     | 641     | 471     | n/a     |
| United States       | 269          | 246     | 320     | 355     | 472     | 428     | 475     | 445     | n/      |
| Germany             | 155          | 187     | 300     | 228     | 434     | 273     | 318     | 343     | n/      |
| Belgium             | 18           | 28      | 50      | 101     | 194     | 225     | 258     | 252     | n/      |
| Malaysia            | 1            | n/a     | 1       | 110     | 320     | 305     | 315     | 228     | n/      |
| France              | 42           | 59      | 74      | 157     | 149     | 114     | 141     | 137     | n/      |
| Spain               | 34           | 37      | 45      | 49      | 88      | 99      | 107     | 104     | n/      |
| Italy               | 41           | 32      | 56      | 72      | 86      | 88      | 90      | 97      | n/      |
| Turkey              | 1            | 2       | 6       | 39      | 71      | 78      | 88      | 88      | n/      |
| Singapore           | 3            | 22      | 127     | 67      | 88      | 80      | 81      | 81      | n/      |
| Others              | 460          | 418     | 516     | 682     | 649     | 635     | 656     | 629     | n/      |
| World               | 1,139        | 1,198   | 1,761   | 2,409   | 3,357   | 2,996   | 3,171   | 2,875   | n/a     |

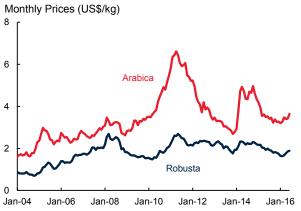
Source: Quarterly Bulletin of Cocoa Statistics.

Notes: n/a implies data not available. Data for 1970/71 are average of 1968-1972.

### **Coconut oil and Palm kernel oil**






Note: Last observation is June 2016.

|                      | 1980/81      | 1990/91    | 2000/01     | 2010/11 | 2011/12 | 2012/13 | 2013/14 | 2014/15 | 2015/16 |
|----------------------|--------------|------------|-------------|---------|---------|---------|---------|---------|---------|
| Coconut oil: produc  | tion (thous  | and metric | tons)       |         |         |         |         |         |         |
| Philippines          | 1,159        | 1,448      | 1,207       | 1,240   | 1,208   | 1,624   | 1,153   | 1,102   | 946     |
| Indonesia            | 677          | 833        | 825         | 847     | 914     | 850     | 933     | 937     | 833     |
| India                | 228          | 292        | 442         | 398     | 393     | 380     | 390     | 377     | 366     |
| Mexico               | 99           | 126        | 126         | 131     | 131     | 131     | 127     | 127     | 127     |
| Malaysia             | 64           | 32         | 38          | 49      | 46      | 51      | 51      | 51      | 48      |
| Vietnam              | n/a          | n/a        | n/a         | 34      | 34      | 34      | 34      | 34      | 33      |
| Thailand             | n/a          | n/a        | n/a         | 27      | 28      | 29      | 29      | 29      | 28      |
| Papua New Guinea     | n/a          | n/a        | n/a         | 54      | 47      | 32      | 26      | 18      | 18      |
| Others               | 596          | 628        | 606         | 314     | 321     | 322     | 313     | 310     | 311     |
| World                | 2,823        | 3,359      | 3,244       | 3,094   | 3,122   | 3,453   | 3,056   | 2,985   | 2,710   |
| Coconut oil: consur  | nption (thou | usand metr | ric tons)   |         |         |         |         |         |         |
| European Union       | 498          | 632        | 734         | 739     | 601     | 716     | 646     | 537     | 545     |
| United States        | 373          | 400        | 585         | 474     | 487     | 520     | 518     | 531     | 478     |
| India                | 233          | 301        | 448         | 411     | 403     | 381     | 392     | 389     | 370     |
| Philippines          | 195          | 318        | 297         | 336     | 375     | 523     | 364     | 241     | 211     |
| Indonesia            | 639          | 600        | 200         | 153     | 138     | 215     | 377     | 155     | 190     |
| China                | 27           | 32         | 43          | 216     | 193     | 152     | 142     | 137     | 136     |
| Mexico               | 115          | 139        | 139         | 153     | 137     | 135     | 129     | 130     | 131     |
| Malaysia             | 4            | 4          | 32          | 90      | 85      | 57      | 49      | 83      | 69      |
| Others               | 575          | 759        | 715         | 671     | 624     | 702     | 507     | 706     | 649     |
| World                | 2,659        | 3,185      | 3,193       | 3,243   | 3,043   | 3,401   | 3,124   | 2,909   | 2,779   |
| Palmkernel oil: proc | duction (tho | usand met  | ric tons)   |         |         |         |         |         |         |
| Indonesia            | 36           | 229        | 709         | 2,534   | 2,857   | 3,022   | 3,264   | 3,538   | 3,525   |
| Malaysia             | 250          | 827        | 1,289       | 2,072   | 2,103   | 2,271   | 2,332   | 2,280   | 2,122   |
| Thailand             | n/a          | n/a        | n/a         | 140     | 148     | 174     | 176     | 165     | 176     |
| Nigeria              | 82           | 146        | 190         | 108     | 111     | 116     | 109     | 114     | 115     |
| Colombia             | n/a          | n/a        | n/a         | 80      | 85      | 90      | 95      | 105     | 110     |
| Papua New Guinea     | n/a          | n/a        | n/a         | 43      | 44      | 51      | 57      | 58      | 59      |
| Ecuador              | n/a          | n/a        | n/a         | 35      | 38      | 39      | 37      | 40      | 42      |
| Côte d'Ivoire        | n/a          | n/a        | n/a         | 40      | 42      | 43      | 42      | 39      | 41      |
| Others               | 195          | 261        | 349         | 339     | 363     | 376     | 411     | 425     | 439     |
| World                | 563          | 1,463      | 2,537       | 5,391   | 5,791   | 6,182   | 6,523   | 6,764   | 6,629   |
| Palmkernel oil: con  | sumption (tl | housand m  | etric tons) |         |         |         |         |         |         |
| Indonesia            | 29           | 66         | 113         | 851     | 1,052   | 1,260   | 1,518   | 1,670   | 1,745   |
| Malaysia             | 4            | 117        | 686         | 1,420   | 1,404   | 1,464   | 1,414   | 1,504   | 1,444   |
| European Union       | 238          | 417        | 500         | 537     | 586     | 667     | 674     | 675     | 670     |
| China                | 1            | 12         | 31          | 421     | 476     | 620     | 495     | 578     | 620     |
| United States        | 69           | 149        | 224         | 279     | 302     | 267     | 266     | 274     | 305     |
| Brazil               | 2            | 10         | 55          | 201     | 189     | 215     | 249     | 241     | 246     |
| India                | 1            | 7          | 13          | 198     | 183     | 326     | 265     | 245     | 182     |
| Nigeria              | 24           | 146        | 175         | 107     | 109     | 113     | 105     | 113     | 114     |
| Others               | 147          | 465        | 708         | 1,214   | 1,276   | 1,326   | 1,406   | 1,423   | 1,407   |
| World                | 515          | 1,389      | 2,505       | 5,228   | 5,577   | 6,258   | 6,392   | 6,723   | 6,733   |

Source: Oil World.

Notes: All quantities are for the crop year (beginning October 1). For example, 2001/02 refers to October 2001 to September 2002. European Union includes EU-15 for 1980/81, 1990/91, 2000/01 and EU-28 for 2010-2016.

### Coffee

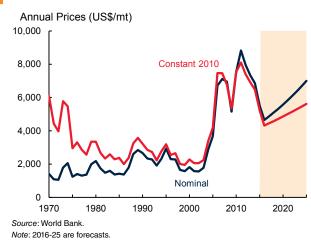


Source: World Bank.

Note: Last observation is June 2016.

Annual Constant Prices (US\$/kg)


Note: 2016-25 are forecasts.


|                       | 1970/71      | 1980/81 | 1990/91      | 2000/01     | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
|-----------------------|--------------|---------|--------------|-------------|---------|---------|---------|---------|---------|
| roduction (thousand   | d 60kg bags  | 5)      |              |             |         |         |         |         |         |
| Brazil                | 11,000       | 21,500  | 31,000       | 34,100      | 54,500  | 57,200  | 54,300  | 49,400  | 55,950  |
| Vietnam               | 56           | 77      | 1,200        | 15,333      | 19,415  | 29,833  | 27,400  | 29,300  | 27,275  |
| Colombia              | 8,000        | 13,500  | 14,500       | 10,500      | 8,525   | 12,075  | 13,300  | 13,600  | 13,300  |
| Indonesia             | 2,330        | 5,365   | 7,480        | 6,495       | 9,325   | 9,500   | 10,470  | 11,750  | 10,000  |
| Ethiopia              | 2,589        | 3,264   | 3,500        | 2,768       | 6,125   | 6,345   | 6,475   | 6,500   | 6,500   |
| Honduras              | 545          | 1,265   | 1,685        | 2,821       | 3,975   | 4,400   | 5,100   | 5,700   | 6,100   |
| India                 | 1,914        | 1,977   | 2,970        | 5,020       | 5,035   | 5,075   | 5,440   | 5,300   | 5,170   |
| Peru                  | 1,114        | 1,170   | 1,170        | 2,824       | 4,100   | 4,250   | 2,900   | 3,500   | 3,800   |
| Uganda                | 2,667        | 2,133   | 2,700        | 3,097       | 3,212   | 3,850   | 3,550   | 4,500   | 3,700   |
| Guatemala             | 1,965        | 2,702   | 3,282        | 4,564       | 3,960   | 3,515   | 3,185   | 3,350   | 3,375   |
| Mexico                | 3,200        | 3,862   | 4,550        | 4,800       | 4,000   | 3,950   | 3,180   | 2,500   | 2,300   |
| China                 | 0            | 0       | 0            | 0           | 827     | 1,947   | 2,000   | 2,100   | 2,300   |
| Nicaragua             | 641          | 971     | 460          | 1,610       | 1,740   | 2,000   | 2,125   | 2,025   | 2,125   |
| Côte d'Ivoire         | 3,996        | 6,090   | 3,300        | 5,100       | 1,600   | 1,675   | 1,400   | 1,650   | 1,700   |
| Malaysia              | 66           | 88      | 75           | 700         | 1,100   | 1,500   | 1,500   | 1,500   | 1,500   |
| Costa Rica            | 1,295        | 2,140   | 2,565        | 2,502       | 1,575   | 1,450   | 1,400   | 1,400   | 1,400   |
| Tanzania, United Rep. | 909          | 1,060   | 763          | 809         | 1,050   | 800     | 1,150   | 1,250   | 1,050   |
| Thailand              | 19           | 201     | 785          | 1,692       | 1,000   | 1,000   | 1,000   | 1,000   | 1,000   |
| Papua New Guinea      | 401          | 880     | 964          | 1,041       | 865     | 855     | 810     | 750     | 750     |
| Others                | 16,495       | 17,929  | 17,232       | 11,441      | 9,480   | 6,558   | 6,570   | 6,217   | 6,40    |
| World                 | 59,202       | 86,174  | 100,181      | 117,217     | 141,409 | 157,778 | 153,255 | 153,292 | 155,697 |
| onsumption (thousa    | and 60kg ba  | nae)    |              |             |         |         |         |         |         |
| European Union        | n/a          | n/a     | n/a          | n/a         | 41,350  | 41,475  | 43,820  | 43,100  | 43,900  |
| United States         | 305          | 297     | 229          | 183         | 22,383  | 23,811  | 23,573  | 24,767  | 25,150  |
| Brazil                | 8,890        | 7,975   | 9,000        | 13,100      | 19,420  | 20,210  | 20,420  | 20,500  | 20,520  |
| Japan                 | 0,030<br>n/a | n/a     | 0,000<br>n/a | n/a         | 7,015   | 7,750   | 7,825   | 8,285   | 8,325   |
| Philippines           | 496          | 432     | 810          | 900         | 2,825   | 3,630   | 4,320   | 5,475   | 4,775   |
| Canada                | n/a          | n/a     | n/a          | n/a         | 4,245   | 4,605   | 4,495   | 4,200   | 4,400   |
| Russian Federation    | n/a          | n/a     | n/a          | n/a         | 4,355   | 4,003   | 4,495   | 4,200   | 4,400   |
| Indonesia             | 888          | 1,228   | 1,295        | 1,335       | 1,680   | 2,750   | 3,040   | 2,750   | 3,110   |
| China                 | n/a          | n/a     | n/a          | n/a         | 1,059   | 2,195   | 2,463   | 2,850   | 3,000   |
| Ethiopia              | 1,170        | 1,600   | 1,900        | 1,667       | 2,860   | 3,120   | 2,405   | 2,030   | 2,97    |
| Vietnam               | 31           | 35      | 1,900        | 417         | 1,337   | 2,008   | 2,903   | 2,600   | 2,868   |
| Korea, Rep.           | n/a          | n/a     | n/a          | -+17<br>n/a | 1,910   | 2,000   | 2,217   | 2,000   | 2,000   |
| Mexico                | 1,512        | 1,500   | 1,400        | 978         | 2,620   | 2,100   | 2,305   | 2,370   | 2,45    |
| Algeria               | n/a          | n/a     | n/a          | n/a         | 1,815   | 2,731   | 2,304   | 2,315   | 2,350   |
| Australia             | n/a          | n/a     | n/a          | n/a         | 1,815   | 1,615   | 1,775   | 1,810   | 1,800   |
| Switzerland           | n/a          | n/a     | n/a          | n/a         | 1,445   | 1,015   | 1,445   | 1,500   | 1,550   |
|                       |              |         |              |             | ,       | ,       | ,       | ,       | 1,550   |
| Colombia              | 1,349        | 1,825   | 1,615        | 1,530       | 1,120   | 1,300   | 1,400   | 1,425   |         |
| India                 | 665          | 887     | 1,224        | 959         | 1,231   | 1,170   | 1,270   | 1,350   | 1,40    |
| Venezuela, RB         | 638          | 1,090   | 850          | 735         | 1,305   | 1,170   | 1,151   | 1,151   | 1,03    |
| Others                | n/a          | n/a     | n/a          | n/a         | 12,878  | 13,156  | 12,874  | 12,990  | 13,072  |
| World                 | n/a          | n/a     | n/a          | n/a         | 134,423 | 142,796 | 145,987 | 149,090 | 150,806 |

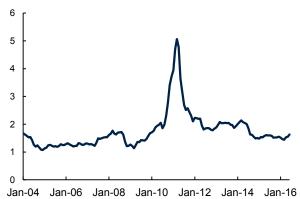
Source: U.S. Department of Agriculture (July 2016 update).

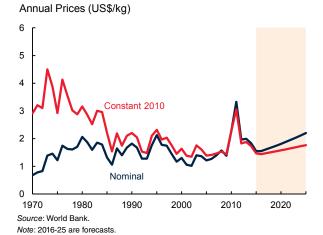
Note: n/a implies data not available.








|                         | 4000        | 4000       | 2000   |        | 2010-23 are io |        | 0040   | 2044   | 2044  |
|-------------------------|-------------|------------|--------|--------|----------------|--------|--------|--------|-------|
|                         | 1980        | 1990       | 2000   | 2005   | 2010           | 2012   | 2013   | 2014   | 201   |
| line Production (thous  |             |            |        |        |                |        |        |        |       |
| Chile                   | 1,068       | 1,588      | 4,602  | 5,321  | 5,419          | 5,434  | 5,776  | 5,750  | 5,76  |
| Peru                    | 367         | 318        | 553    | 1,010  | 1,247          | 1,299  | 1,376  | 1,380  | 1,70  |
| China                   | 177         | 296        | 549    | 639    | 1,180          | 1,552  | 1,681  | 1,632  | 1,66  |
| United States           | 1,181       | 1,587      | 1,440  | 1,157  | 1,129          | 1,196  | 1,279  | 1,383  | 1,37  |
| Congo, Dem. Rep.        | 460         | 356        | 33     | 98     | 378            | 608    | 817    | 996    | 1,03  |
| Australia               | 244         | 327        | 832    | 930    | 870            | 914    | 999    | 965    | 95    |
| Zambia                  | 596         | 496        | 249    | 441    | 732            | 782    | 839    | 756    | 75    |
| Russian Federation      | n/a         | n/a        | 580    | 805    | 703            | 720    | 720    | 720    | 72    |
| Canada                  | 716         | 794        | 634    | 595    | 522            | 580    | 632    | 696    | 69    |
| Indonesia               | 59          | 169        | 1,006  | 1,064  | 871            | 398    | 494    | 366    | 58    |
| Kazakhstan              | n/a         | n/a        | 433    | 436    | 404            | 491    | 538    | 501    | 56    |
| Mexico                  | 175         | 291        | 365    | 391    | 270            | 500    | 480    | 514    | 54    |
| Poland                  | 343         | 370        | 454    | 523    | 425            | 427    | 429    | 421    | 42    |
| Others                  | n/a         | n/a        | 1,476  | 1,619  | 1,985          | 2,088  | 2,251  | 2,399  | 2,51  |
| World                   | 7,864       | 8,997      | 13,207 | 15,029 | 16,135         | 16,989 | 18,311 | 18,478 | 19,30 |
| Refined Production (the | ousand me   | tric tons) |        |        |                |        |        |        |       |
| China                   | 314         | 562        | 1,312  | 2,566  | 4,540          | 5,879  | 6,667  | 7,959  | 7,96  |
| Chile                   | 811         | 1,192      | 2,669  | 2,824  | 3,244          | 2,902  | 2,755  | 2,729  | 2,68  |
| Japan                   | 1,014       | 1,008      | 1,437  | 1,395  | 1,549          | 1,516  | 1,468  | 1,554  | 1,48  |
| United States           | 1,686       | 2,017      | 1,802  | 1,257  | 1,093          | 1,001  | 1,040  | 1,095  | 1,13  |
| Russian Federation      | n/a         | n/a        | 824    | 968    | 900            | 880    | 874    | 874    | 87    |
| India                   | 23          | 39         | 265    | 518    | 647            | 689    | 619    | 764    | 79    |
| Congo, Dem. Rep.        | 144         | 173        | 29     | 3      | 254            | 453    | 643    | 742    | 77    |
| Zambia                  | 607         | 479        | 226    | 465    | 767            | 700    | 629    | 710    | 71    |
| Germany                 | 425         | 533        | 709    | 639    | 585            | 534    | 680    | 673    | 67    |
| Korea, Rep.             | 79          | 187        | 471    | 527    | 556            | 590    | 604    | 604    | 60    |
| Poland                  | 357         | 346        | 486    | 560    | 547            | 566    | 565    | 577    | 57    |
| Australia               | 182         | 274        | 484    | 471    | 424            | 461    | 480    | 511    | 48    |
| Spain                   | 154         | 171        | 316    | 308    | 347            | 408    | 351    | 428    | 42    |
| Others                  | n/a         | n/a        | 3,731  | 4,135  | 3,640          | 3,627  | 3,737  | 3,707  | 3,90  |
| World                   | 9,390       | 10,809     | 14,761 | 16,635 | 19,094         | 20,207 | 21,112 | 22,927 | 23,09 |
| Refined Consumption (   | (thousand i | metric ton | s)     |        |                |        |        |        |       |
| China                   | 286         | 512        | 1,869  | 3,621  | 7,385          | 8,896  | 9,830  | 11,303 | 11,45 |
| United States           | 1,868       | 2,150      | 2,979  | 2,264  | 1,760          | 1,758  | 1,826  | 1,767  | 1,79  |
| Germany                 | 870         | 1,028      | 1,309  | 1,115  | 1,312          | 1,114  | 1,136  | 1,162  | 1,21  |
| Japan                   | 1,158       | 1,577      | 1,351  | 1,229  | 1,060          | 985    | 996    | 1,072  | 99    |
| Korea, Rep.             | 85          | 324        | 862    | 868    | 856            | 721    | 722    | 759    | 70    |
| Italy                   | 388         | 475        | 674    | 680    | 619            | 570    | 552    | 622    | 61    |
| India                   | 77          | 135        | 246    | 397    | 514            | 456    | 423    | 434    | 49    |
| Turkey                  | 33          | 103        | 248    | 319    | 369            | 429    | 453    | 453    | 47    |
| Taiwan, China           | 85          | 265        | 628    | 638    | 532            | 432    | 437    | 465    | 47    |
| Others                  | n/a         | n/a        | 4,929  | 5,516  | 4,932          | 4,772  | 4,626  | 4,774  | 4,52  |
| World                   | 9,385       | 10,780     | 15,096 | 16,649 | 19,340         | 20,133 | 21,002 | 22,811 | 22,73 |


Source: World Bureau of Metal Statistics.

Notes: n/a implies data not available. Refined production and consumption include significant recyled material.

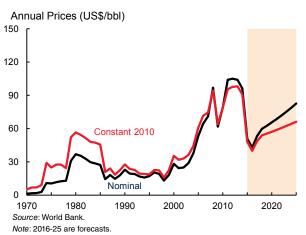
### Cotton







Source: World Bank. Note: Last observation is June 2016.

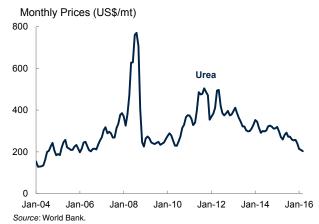

| Note: Last observation is |               |         |         |         |         |         |         |         |        |
|---------------------------|---------------|---------|---------|---------|---------|---------|---------|---------|--------|
|                           | 1970/71       | 1980/81 | 1990/91 | 2000/01 | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/1 |
| Production (tho           | usand metric  | tons)   |         |         |         |         |         |         |        |
| India                     | 909           | 1,322   | 1,989   | 2,380   | 5,865   | 6,766   | 6,460   | 5,880   | 6,45   |
| China                     | 1,995         | 2,707   | 4,508   | 4,505   | 6,400   | 6,929   | 6,480   | 5,170   | 4,65   |
| United States             | 2,219         | 2,422   | 3,376   | 3,742   | 3,942   | 2,811   | 3,553   | 2,810   | 3,13   |
| Pakistan                  | 543           | 714     | 1,638   | 1,816   | 1,948   | 2,076   | 2,305   | 1,510   | 2,05   |
| Brazil                    | 594           | 623     | 717     | 939     | 1,960   | 1,734   | 1,563   | 1,440   | 1,49   |
| Uzbekistan                | n/a           | 1,671   | 1,593   | 975     | 910     | 910     | 885     | 810     | 8      |
| Turkey                    | 400           | 500     | 655     | 880     | 594     | 843     | 722     | 699     | 7      |
| Australia                 | 19            | 99      | 433     | 804     | 898     | 933     | 937     | 546     | 6      |
| Turkmenistan              | n/a           | n/a     | 437     | 187     | 380     | 329     | 327     | 300     | 2      |
| Burkina Faso              | 8             | 23      | 77      | 116     | 141     | 247     | 254     | 252     | 2      |
| Greece                    | 110           | 115     | 213     | 421     | 180     | 280     | 308     | 218     | 2      |
| Mexico                    | 312           | 353     | 175     | 72      | 157     | 193     | 206     | 188     | 2      |
| Others                    | n/a           | n/a     | 3,141   | 2,688   | 2,034   | 2,135   | 2,116   | 1,987   | 2,0    |
| World                     | 11,740        | 13,831  | 18,951  | 19,524  | 25,408  | 26,185  | 26,116  | 21,810  | 23,0   |
| tocks (thousan            | d metric tons | 5)      |         |         |         |         |         |         |        |
| China                     | 412           | 476     | 1,589   | 3,755   | 2,087   | 12,088  | 12,876  | 12,010  | 10,8   |
| India                     | 376           | 491     | 539     | 922     | 1,850   | 1,922   | 1,946   | 2,198   | 2,1    |
| United States             | 915           | 581     | 510     | 1,306   | 566     | 651     | 980     | 1,010   | 1,1    |
| Turkey                    | 24            | 112     | 150     | 283     | 412     | 821     | 809     | 842     | 9      |
| Brazil                    | 321           | 391     | 231     | 755     | 1,400   | 852     | 852     | 841     | 7      |
| Pakistan                  | 55            | 131     | 313     | 608     | 316     | 422     | 414     | 566     | 6      |
| Others                    | 2,502         | 2,969   | 3,428   | 2,984   | 2,832   | 3,734   | 4,345   | 2,913   | 3,1    |
| World                     | 4,605         | 5,151   | 6,761   | 10,614  | 9,463   | 20,490  | 22,222  | 20,380  | 19,6   |
| xports (thousa            | nd metric ton | is)     |         |         |         |         |         |         |        |
| United States             | 848           | 1,290   | 1,697   | 1,467   | 3,130   | 2,293   | 2,449   | 2,003   | 2,2    |
| India                     | 34            | 140     | 255     | 24      | 1,085   | 2,014   | 914     | 1,213   | 1,0    |
| Brazil                    | 220           | 21      | 167     | 68      | 435     | 485     | 851     | 1,005   | 8      |
| Australia                 | 4             | 53      | 329     | 849     | 545     | 1,057   | 520     | 531     | 5      |
| Uzbekistan                | n/a           | n/a     | n/a     | 750     | 600     | 615     | 550     | 544     | 4      |
| Burkina Faso              | 9             | 22      | 73      | 112     | 136     | 253     | 243     | 265     | 2      |
| Others                    | n/a           | n/a     | n/a     | 2,535   | 1,786   | 2,259   | 2,120   | 1,809   | 1,9    |
| World                     | 3,875         | 4,414   | 5,069   | 5,805   | 7,717   | 8,976   | 7,647   | 7,370   | 7,4    |
| mports (thousa            | nd metric ton | s)      |         |         |         |         |         |         |        |
| Vietnam                   | 33            | 40      | 31      | 84      | 350     | 691     | 941     | 1,100   | 1,3    |
| Bangladesh                | 0             | 45      | 80      | 248     | 843     | 967     | 964     | 1,079   | 1,1    |
| China                     | 108           | 773     | 480     | 52      | 2,609   | 3,075   | 1,804   | 1,083   | 9      |
| Turkey                    | 10            |         | 46      | 381     | 760     | 924     | 800     | 780     | 8      |
| Indonesia                 | 36            | 106     | 324     | 570     | 471     | 651     | 728     | 660     | 6      |
| Pakistan                  | 1             | 1       | 0       | 101     | 314     | 463     | 541     | 536     | 3      |
| Thailand                  | 46            | 86      | 354     | 342     | 383     | 369     | 398     | 286     | 2      |
| Korea, Rep.               | 121           | 332     | 447     | 304     | 230     | 311     | 285     | 272     | 2      |
| Others                    | 3,741         | 3,172   | 3,458   | 3,682   | 1,797   | 1,270   | 1,136   | 1,574   | 1,5    |
| World                     | 4,086         | 4,555   | 5,220   | 5,764   | 7,756   | 8,721   | 7,597   | 7,370   | 7,4    |

Source: International Cotton Advisory Committee (January-February 2016 update). Note: n/a implies data not available.

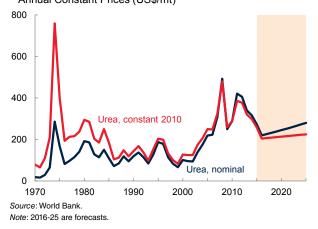
### **Crude oil**



Note: Last observation is June 2016.




|                      | 1970         | 1980     | 1990   | 2000   | 2010   | 2012   | 2013   | 2014   | 2015   |
|----------------------|--------------|----------|--------|--------|--------|--------|--------|--------|--------|
| roduction (thousand  | l barrels pe | er dav)  |        |        |        |        |        |        |        |
| United States        | 11,297       | 10,170   | 8,914  | 7,732  | 7,550  | 8,883  | 10,059 | 11,723 | 12,704 |
| Saudi Arabia         | 3,851        | 10,270   | 7,105  | 9,470  | 10,075 | 11,635 | 11,393 | 11,505 | 12,014 |
| Russian Federation   | n/a          | n/a      | 10,342 | 6,583  | 10,366 | 10,639 | 10,779 | 10,838 | 10,980 |
| Canada               | 1,473        | 1,764    | 1,968  | 2,703  | 3,332  | 3,740  | 4,000  | 4,278  | 4,385  |
| China                | 616          | 2,122    | 2,778  | 3,257  | 4,077  | 4,155  | 4,216  | 4,246  | 4,309  |
| Iraq                 | 1,549        | 2,658    | 2,149  | 2,613  | 2,490  | 3,116  | 3,141  | 3,285  | 4,031  |
| Iran, Islamic Rep.   | 3,848        | 1,479    | 3,270  | 3,852  | 4,420  | 3,814  | 3,611  | 3,736  | 3,920  |
| United Arab Emirates | 762          | 1,745    | 2,283  | 2,660  | 2,895  | 3,403  | 3,640  | 3,685  | 3,902  |
| Kuwait               | 3,036        | 1,757    | 964    | 2,244  | 2,561  | 3,171  | 3,134  | 3,120  | 3,096  |
| Venezuela, RB        | 3,754        | 2,228    | 2,244  | 3,097  | 2,838  | 2,701  | 2,678  | 2,685  | 2,626  |
| Mexico               | 487          | 2,129    | 2,941  | 3,459  | 2,961  | 2,912  | 2,876  | 2,785  | 2,588  |
| Brazil               | 167          | 188      | 650    | 1,271  | 2,137  | 2,149  | 2,114  | 2,346  | 2,527  |
| Nigeria              | 1,084        | 2,059    | 1,870  | 2,155  | 2,535  | 2,430  | 2,321  | 2,389  | 2,352  |
| Norway               | n/a          | 528      | 1,716  | 3,346  | 2,136  | 1,917  | 1,838  | 1,889  | 1,948  |
| Qatar                | 363          | 476      | 434    | 853    | 1,638  | 1,931  | 1,903  | 1,893  | 1,898  |
| Angola               | 103          | 150      | 475    | 746    | 1,863  | 1,784  | 1,799  | 1,712  | 1,826  |
| Kazakhstan           | n/a          | n/a      | 571    | 740    | 1,676  | 1,662  | 1,720  | 1,701  | 1,669  |
| Algeria              | 1,052        | 1,139    | 1,347  | 1,549  | 1,689  | 1,537  | 1,485  | 1,589  | 1,586  |
| Colombia             | 226          | 131      | 446    | 687    | 786    | 944    | 1,004  | 990    | 1,008  |
| United Kingdom       | 4            | 1,676    | 1,933  | 2,714  | 1,361  | 949    | 867    | 855    | 965    |
| Oman                 | 332          | 285      | 695    | 961    | 865    | 918    | 942    | 943    | 952    |
| India                | 140          | 193      | 715    | 726    | 882    | 906    | 906    | 887    | 876    |
| Azerbaijan           | n/a          | n/a      | 254    | 281    | 1,023  | 872    | 877    | 849    | 841    |
| Others               | n/a          | n/a      | 9,323  | 11,223 | 11,126 | 10,048 | 9,288  | 8,907  | 8,669  |
| World                | 48,056       | 62,959   | 65,386 | 74,922 | 83,283 | 86,218 | 86,591 | 88,834 | 91,670 |
| onsumption (thousa   | nd barrels   | per day) |        |        |        |        |        |        |        |
| Untied States        | 14,710       | 17,062   | 16,988 | 19,701 | 19,180 | 18,490 | 18,961 | 19,106 | 19,396 |
| China                | 554          | 1,707    | 2,297  | 4,697  | 9,436  | 10,229 | 10,732 | 11,201 | 11,968 |
| India                | 390          | 643      | 1,211  | 2,259  | 3,319  | 3,685  | 3,727  | 3,849  | 4,159  |
| Japan                | 3,876        | 4,905    | 5,240  | 5,542  | 4,442  | 4,688  | 4,531  | 4,309  | 4,150  |
| Saudi Arabia         | 435          | 592      | 1,136  | 1,627  | 3,218  | 3,462  | 3,469  | 3,732  | 3,895  |
| Brazil               | 516          | 1,134    | 1,454  | 2,066  | 2,721  | 2,905  | 3,106  | 3,242  | 3,157  |
| Russian Federation   | n/a          | n/a      | 5,042  | 2,540  | 2,878  | 3,119  | 3,145  | 3,255  | 3,113  |
| Korea, Rep.          | 162          | 476      | 1,041  | 2,260  | 2,370  | 2,458  | 2,455  | 2,454  | 2,575  |
| Germany              | 2,765        | 3,014    | 2,685  | 2,746  | 2,445  | 2,356  | 2,408  | 2,348  | 2,338  |
| Canada               | 1,472        | 1,898    | 1,747  | 2,043  | 2,324  | 2,372  | 2,383  | 2,371  | 2,322  |
| Iran, Islamic Rep.   | 224          | 591      | 1,069  | 1,455  | 1,875  | 1,915  | 2,048  | 2,013  | 1,947  |
| Mexico               | 412          | 1,048    | 1,580  | 1,965  | 2,014  | 2,063  | 2,020  | 1,941  | 1,926  |
| Indonesia            | 138          | 395      | 653    | 1,139  | 1,402  | 1,631  | 1,643  | 1,676  | 1,628  |
| France               | 1,860        | 2,220    | 1,895  | 1,994  | 1,763  | 1,676  | 1,664  | 1,617  | 1,606  |
| United Kingdom       | 2,031        | 1,649    | 1,751  | 1,713  | 1,623  | 1,530  | 1,525  | 1,513  | 1,559  |
| Others               | n/a          | n/a      | 20,879 | 23,241 | 27,754 | 28,082 | 28,230 | 28,483 | 29,270 |
| Total World          | 45,229       | 61,401   | 66,667 | 76,988 | 88,765 | 90,663 | 92,049 | 93,109 | 95,008 |


Source: BP Statistical Review.

Notes: n/a implies data not available. Production includes crude oil and natural gas liquids but excludes liquid fuels from other sources such as biomass and derivatives of coal and natural gas included in consumption.

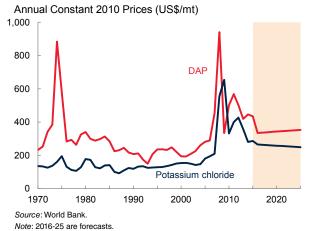
### Fertilizers-Nitrogen



Annual Constant Prices (US\$/mt)



Note: Last observation is June 2016.


|                      | 1970          | 1980     | 1990   | 2000   | 2009    | 2010    | 2011    | 2012    | 2013    |
|----------------------|---------------|----------|--------|--------|---------|---------|---------|---------|---------|
| Production (thousand | tonnes nutrie | ents)    |        |        |         |         |         |         |         |
| China                | 1,200         | 9,993    | 14,637 | 22,175 | 36,009  | 35,678  | 36,323  | 36,056  | 36,810  |
| India                | 838           | 2,164    | 6,993  | 10,943 | 11,924  | 12,178  | 12,288  | 12,237  | 12,409  |
| United States        | 8,161         | 12,053   | 10,816 | 8,352  | 9,722   | 9,587   | 9,414   | 10,150  | 9,280   |
| Russian Federation   | n/a           | n/a      | n/a    | 5,452  | 6,052   | 6,544   | 6,917   | 6,605   | 6,819   |
| Canada               | 726           | 1,755    | 2,683  | 3,797  | 3,509   | 3,364   | 3,565   | 3,344   | 3,225   |
| Indonesia            | 45            | 958      | 2,462  | 2,853  | 3,261   | 3,207   | 3,375   | 3,313   | 3,173   |
| Pakistan             | 140           | 572      | 1,120  | 2,054  | 2,594   | 2,629   | 2,534   | 2,232   | 2,589   |
| Qatar                | n/a           | 295      | 350    | 748    | 1,379   | 1,556   | 1,480   | 2,095   | 2,535   |
| Ukraine              | n/a           | n/a      | 3,004  | 2,130  | 2,154   | 2,312   | 2,985   | 3,072   | 2,489   |
| Egypt, Arab Rep.     | 118           | 401      | 678    | 1,441  | 2,779   | 2,761   | 2,709   | 2,474   | 2,308   |
| Iran, Islamic Rep.   | 31            | 72       | 376    | 726    | 1,311   | 1,524   | 1,904   | 2,058   | 1,975   |
| Saudi Arabia         | 0             | 138      | 568    | 1,278  | 1,619   | 1,695   | 1,737   | 1,923   | 1,920   |
| Poland               | 1,030         | 1,290    | 1,233  | 1,497  | 1,320   | 1,509   | 1,445   | 1,529   | 1,466   |
| Netherlands          | 957           | 1,624    | 1,928  | 1,300  | 1,216   | 1,175   | 1,322   | 1,293   | 1,381   |
| Germany              | 1,900         | 2,380    | 1,165  | 1,558  | 1,165   | 1,289   | 1,275   | 1,326   | 1,326   |
| Vietnam              | 0             | 15       | 18     | 227    | 431     | 479     | 503     | 861     | 999     |
| Belgium              | 594           | 743      | 770    | 935    | 884     | 947     | 956     | 932     | 911     |
| Turkey               | 82            | 600      | 1,026  | 400    | 557     | 747     | 929     | 905     | 865     |
| Belarus              | n/a           | n/a      | 747    | 574    | 670     | 740     | 773     | 832     | 862     |
| Others               | 16,868        | 27,900   | 21,389 | 18,185 | 17,017  | 18,195  | 18,739  | 18,344  | 18,126  |
| World                | 32,690        | 62,951   | 71,964 | 86,624 | 105,573 | 108,116 | 111,170 | 111,580 | 111,468 |
| consumption (thousar | nd tonnes nut | trients) |        |        |         |         |         |         |         |
| China                | 2,987         | 11,787   | 19,233 | 22,720 | 33,600  | 32,599  | 33,800  | 34,294  | 34,250  |
| India                | 1,310         | 3,522    | 7,566  | 10,911 | 15,582  | 16,558  | 17,300  | 16,821  | 16,731  |
| United States        | 7,363         | 10,818   | 10,239 | 10,467 | 11,117  | 11,737  | 12,231  | 12,050  | 12,247  |
| Brazil               | 276           | 886      | 797    | 1,998  | 2,554   | 2,855   | 3,366   | 3,435   | 3,699   |
| Pakistan             | 264           | 843      | 1,472  | 2,265  | 3,476   | 3,143   | 3,209   | 2,853   | 3,179   |
| Indonesia            | 184           | 851      | 1,610  | 1,964  | 3,215   | 3,045   | 2,940   | 3,063   | 2,820   |
| Canada               | 323           | 946      | 1,158  | 1,592  | 1,901   | 1,990   | 2,297   | 2,479   | 2,457   |
| France               | 1,425         | 2,146    | 2,493  | 2,317  | 2,069   | 2,337   | 2,020   | 2,140   | 2,191   |
| Germany              | 1,642         | 2,303    | 1,787  | 1,848  | 1,569   | 1,786   | 1,640   | 1,648   | 1,675   |
| Turkey               | 243           | 782      | 1,200  | 1,276  | 1,412   | 1,344   | 1,259   | 1,432   | 1,584   |
| Russian Federation   | n/a           | n/a      | 4,344  | 960    | 1,494   | 1,483   | 1,577   | 1,576   | 1,537   |
| Thailand             | 50            | 136      | 577    | 922    | 1,228   | 1,311   | 1,386   | 1,382   | 1,480   |
| Ukraine              | n/a           | n/a      | 1,836  | 350    | 700     | 650     | 1,159   | 1,254   | 1,382   |
| Australia            | 123           | 248      | 439    | 951    | 849     | 982     | 1,099   | 1,099   | 1,315   |
| Vietnam              | 166           | 129      | 425    | 1,332  | 1,190   | 1,250   | 1,300   | 1,407   | 1,261   |
| Mexico               | 406           | 878      | 1,346  | 1,342  | 1,113   | 1,166   | 1,168   | 1,201   | 1,246   |
| Poland               | 785           | 1,344    | 671    | 896    | 1,113   | 1,090   | 1,095   | 1,204   | 1,172   |
| Bangladesh           | 99            | 266      | 609    | 996    | 1,149   | 1,237   | 1,122   | 1,112   | 1,133   |
| Egypt, Arab Rep.     | 331           | 554      | 745    | 1,084  | 1,193   | 1,159   | 1,207   | 1,087   | 1,114   |
| Others               | 13,446        | 22,054   | 18,231 | 15,880 | 15,928  | 16,800  | 16,660  | 17,006  | 17,665  |
| World                | 31,423        | 60,493   | 76,777 | 82,070 | 102,453 | 104,522 | 107,835 | 108,543 | 110,136 |

Sources: International Fertilizer Industry Association (http://ifadata.fertilizer.org/ucSearch.aspx).

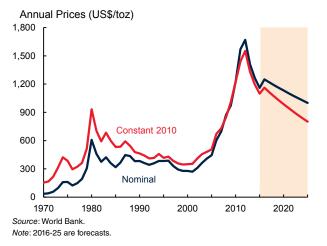
Notes: n/a implies data not available. The statistics are based on the nutrient content. All production statistics are expressed on a calendar-year basis, while consumption statistics are expressed either on a calendar- or on a fertilizer-year basis (see www.fertilizers.org for details).

### Fertilizers—Phosphate and Potash





Note: Last observation is June 2016.


| Note: Last observation is June 201 | 6.            |            |            | Note:  | 2016-25 are fore | ecasts. |        |        |        |
|------------------------------------|---------------|------------|------------|--------|------------------|---------|--------|--------|--------|
|                                    | 1970          | 1980       | 1990       | 2000   | 2009             | 2010    | 2011   | 2012   | 2013   |
| Phosphate: productio               | n (thousand   | tonnes nu  | itrients)  |        |                  |         |        |        |        |
| China                              | 907           | 2,607      | 4,114      | 6,759  | 14,374           | 15,998  | 17,631 | 16,387 | 16,620 |
| United States                      | n/a           | 7,437      | 8,105      | 7,337  | 5,817            | 6,297   | 6,123  | 6,456  | 6,055  |
| India                              | 228           | 854        | 2,077      | 3,751  | 4,390            | 4,378   | 4,370  | 3,825  | 3,973  |
| Russian Federation                 | n/a           | n/a        | 4,943      | 2,320  | 2,578            | 2,926   | 3,070  | 2,940  | 2,929  |
| Morocco                            | 99            | 174        | 1,180      | 1,122  | 1,288            | 1,875   | 2,242  | 2,433  | 2,198  |
| Brazil                             | 169           | 1,623      | 1,091      | 1,496  | 1,813            | 2,004   | 2,011  | 2,183  | 2,100  |
| Saudi Arabia                       | 0             | n/a        | n/a        | 159    | 71               | 119     | 298    | 826    | 919    |
| Tunisia                            | 177           | 408        | 664        | 885    | 859              | 997     | 398    | 528    | 631    |
| Others                             | 14,102        | 20,574     | 14,244     | 8,915  | 6,787            | 8,102   | 8,323  | 8,171  | 8,036  |
| World                              | 15,682        | 33,677     | 36,417     | 32,744 | 37,977           | 42,697  | 44,466 | 43,749 | 43,460 |
| Phosphate: consumpt                | tion (thousar | nd tonnes  | nutrients) |        |                  |         |        |        |        |
| China                              | 907           | 2,952      | 5,770      | 8,664  | 11,000           | 12,100  | 12,300 | 12,400 | 11,480 |
| India                              | 305           | 1,091      | 3,125      | 4,248  | 7,278            | 8,050   | 7,914  | 6,653  | 5,695  |
| Brazil                             | 416           | 1,965      | 1,202      | 2,544  | 3,342            | 3,384   | 3,860  | 4,325  | 4,641  |
| United States                      | 4,671         | 4,926      | 3,811      | 3,862  | 3,719            | 3,890   | 3,946  | 4,215  | 4,335  |
| Canada                             | 326           | 634        | 578        | 634    | 630              | 723     | 799    | 831    | 886    |
| Pakistan                           | 31            | 227        | 389        | 675    | 860              | 767     | 633    | 747    | 881    |
| Indonesia                          | 45            | 274        | 581        | 263    | 450              | 500     | 584    | 695    | 849    |
| Australia                          | 757           | 853        | 579        | 1,107  | 641              | 817     | 873    | 803    | 816    |
| Others                             | 13,743        | 18,990     | 19,887     | 10,815 | 9,556            | 10,343  | 10,642 | 10,732 | 11,405 |
| World                              | 21,202        | 31,912     | 35,920     | 32,812 | 37,477           | 40,574  | 41,551 | 41,401 | 40,988 |
| Potash: production (th             | nousand ton   | nes nutrie | nts)       |        |                  |         |        |        |        |
| Canada                             | 3,179         | 7,337      | 7,005      | 9,174  | 4,414            | 10,289  | 9,919  | 9,877  | 9,461  |
| Russian Federation                 | n/a           | n/a        | n/a        | 3,716  | 3,691            | 6,128   | 6,526  | 5,403  | 6,086  |
| China                              | n/a           | 20         | 46         | 275    | 2,600            | 3,101   | 3,390  | 4,007  | 4,565  |
| Belarus                            | n/a           | n/a        | 4,992      | 3,372  | 2,485            | 5,223   | 5,332  | 4,831  | 4,229  |
| Germany                            | 4,824         | 6,123      | 4,967      | 3,409  | 1,789            | 2,962   | 3,106  | 3,056  | 2,968  |
| Israel                             | 576           | 797        | 1,296      | 1,748  | 1,653            | 1,944   | 1,700  | 2,100  | 2,150  |
| Chile                              | 21            | 23         | 41         | 408    | 662              | 850     | 964    | 1,244  | 1,187  |
| Jordan                             | n/a           | n/a        | 842        | 1,162  | 672              | 1,166   | 1,355  | 1,094  | 1,047  |
| Others                             | 8,871         | 13,307     | 3,649      | 2,878  | 1,801            | 2,043   | 2,482  | 2,409  | 2,604  |
| World                              | 17,471        | 27,608     | 22,838     | 26,141 | 19,767           | 33,706  | 34,775 | 34,022 | 34,297 |
| Potash: consumption                | (thousand to  | onnes nuti | rients)    |        |                  |         |        |        |        |
| China                              | 25            | 527        | 1,761      | 3,364  | 4,300            | 5,200   | 5,700  | 6,000  | 6,500  |
| Brazil                             | 307           | 1,267      | 1,210      | 2,760  | 3,149            | 3,894   | 4,431  | 4,844  | 5,094  |
| United States                      | 3,827         | 5,733      | 4,537      | 4,469  | 4,044            | 4,165   | 4,186  | 4,461  | 4,717  |
| India                              | 199           | 618        | 1,309      | 1,565  | 3,632            | 3,514   | 2,576  | 2,062  | 2,058  |
| Indonesia                          | 18            | 91         | 310        | 266    | 801              | 1,250   | 1,401  | 1,490  | 1,580  |
| Malaysia                           | 61            | 250        | 494        | 650    | 700              | 1,150   | 1,250  | 1,290  | 1,290  |
| Belarus                            | n/a           | n/a        | 986        | 450    | 663              | 660     | 787    | 720    | 683    |
| Viet Nam                           | 38            | 39         | 29         | 450    | 300              | 400     | 440    | 552    | 570    |
| Others                             | 11,289        | 15,302     | 13,685     | 8,121  | 6,011            | 7,243   | 7,369  | 7,531  | 7,874  |
| World                              | 15,764        | 23,826     | 24,320     | 22,095 | 23,601           | 27,477  | 28,140 | 28,950 | 30,365 |

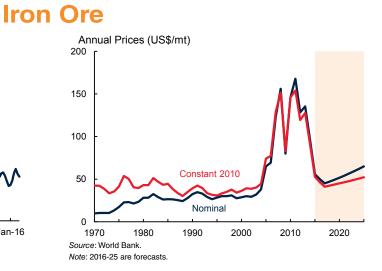
Sources: International Fertilizer Industry Association (http://ifadata.fertilizer.org/ucSearch.aspx).

Notes: n/a implies data not available. The statistics are based on the nutrient content. All production statistics are expressed on a calendar-year basis, while consumption statistics are expressed either on a calendar- or on a fertilizer-year basis (see www.fertilizers.org for details).

Gold







Source: World Bank. Note: Last observation is June 2016.

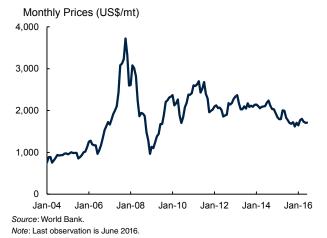
|                          | 1995  | 2000  | 2005  | 2009  | 2010  | 2011  | 2012  | 2013  |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Production (metric tons) |       |       |       |       |       |       |       |       |
| China                    | 136   | 175   | 209   | 314   | 341   | 361   | 403   | 428   |
| Australia                | 247   | 296   | 263   | 223   | 260   | 258   | 252   | 267   |
| Russian Federation       | 128   | 144   | 163   | 205   | 201   | 185   | 183   | 230   |
| United States            | 317   | 353   | 256   | 223   | 231   | 234   | 235   | 230   |
| South Africa             | 522   | 428   | 297   | 205   | 191   | 187   | 154   | 169   |
| Peru                     | 56    | 134   | 206   | 184   | 164   | 164   | 162   | 151   |
| Canada                   | 152   | 156   | 121   | 97    | 91    | 100   | 105   | 125   |
| Mexico                   | 20    | 24    | 30    | 62    | 79    | 89    | 103   | 120   |
| Uzbekistan               | 70    | 88    | 84    | 73    | 90    | 91    | 93    | 98    |
| Ghana                    | 53    | 72    | 67    | 91    | 93    | 88    | 99    | 95    |
| Brazil                   | 64    | 61    | 38    | 60    | 62    | 65    | 67    | 80    |
| Papua New Guinea         | 52    | 73    | 67    | 68    | 67    | 62    | 58    | 63    |
| Indonesia                | 63    | 125   | 158   | 128   | 106   | 77    | 69    | 60    |
| Colombia                 | 22    | 37    | 36    | 48    | 54    | 56    | 66    | 56    |
| Argentina                | 1     | 26    | 28    | 49    | 64    | 59    | 55    | 52    |
| Chile                    | 44    | 54    | 40    | 41    | 39    | 45    | 50    | 49    |
| Tanzania                 | 0     | 15    | 48    | 39    | 39    | 37    | 40    | 43    |
| Kazakhstan               | 11    | 27    | 18    | 23    | 30    | 37    | 40    | 42    |
| Mali                     | 8     | 29    | 44    | 43    | 39    | 36    | 41    | 41    |
| Others                   | 206   | 242   | 291   | 300   | 352   | 404   | 439   | 470   |
| World                    | 2,174 | 2,560 | 2,464 | 2,477 | 2,594 | 2,635 | 2,713 | 2,868 |
| abrication (metric tons) |       |       |       |       |       |       |       |       |
| China                    | 217   | 213   | 277   | 431   | 523   | 651   | 698   | 1,058 |
| India                    | 426   | 704   | 695   | 571   | 783   | 761   | 736   | 716   |
| Turkey                   | 126   | 228   | 303   | 111   | 109   | 136   | 114   | 178   |
| United States            | 245   | 277   | 219   | 173   | 179   | 167   | 147   | 160   |
| Japan                    | 189   | 161   | 165   | 141   | 158   | 147   | 126   | 124   |
| Italy                    | 458   | 522   | 290   | 135   | 126   | 103   | 96    | 92    |
| Russian Federation       | n/a   | 34    | 61    | 58    | 61    | 66    | 72    | 74    |
| Indonesia                | 133   | 99    | 87    | 46    | 39    | 39    | 44    | 52    |
| South Korea              | 82    | 107   | 83    | 65    | 68    | 62    | 54    | 49    |
| Switzerland              | 47    | 54    | 56    | 38    | 41    | 48    | 48    | 48    |
| Canada                   | 28    | 25    | 27    | 48    | 44    | 45    | 32    | 45    |
| Malaysia                 | 78    | 86    | 74    | 45    | 44    | 37    | 35    | 45    |
| Egypt, Arab Rep.         | 61    | 107   | 71    | 45    | 43    | 30    | 39    | 42    |
| Iran, Islamic Rep.       | 37    | 46    | 41    | 38    | 39    | 37    | 37    | 42    |
| Saudi Arabia             | 156   | 153   | 125   | 54    | 47    | 37    | 33    | 41    |
| Germany                  | 71    | 64    | 52    | 38    | 41    | 39    | 36    | 37    |
| United Arab Emirates     | 30    | 50    | 55    | 36    | 33    | 28    | 28    | 38    |
| Brazil                   | 27    | 32    | 26    | 25    | 30    | 29    | 30    | 33    |
| Singapore                | 22    | 26    | 30    | 23    | 25    | 24    | 22    | 25    |
| Others                   | 862   | 772   | 590   | 404   | 363   | 342   | 312   | 340   |
| World                    | 3,294 | 3,761 | 3,325 | 2,524 | 2,795 | 2,828 | 2,738 | 3,238 |

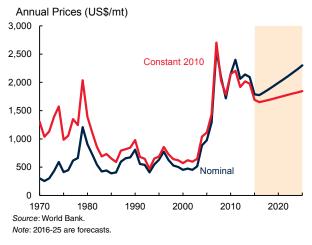
Sources: World Bureau of Metal Statistics and Thomson Reuters.

Notes: n/a implies data not available. Fabrication includes the use of scrap. Fabrication of "Saudi Arabia" includes Saudi Arabia and the Republic of Yemen in 1995 and 2000.






Note: Last observation is June 2016.

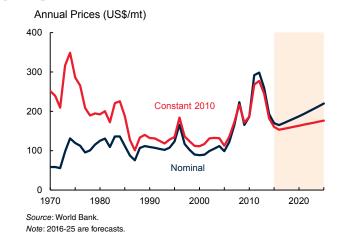

|                        | 1971          | 1980     | 1990 | 2000 | 2010  | 2011  | 2012  | 2013  | 2014  |
|------------------------|---------------|----------|------|------|-------|-------|-------|-------|-------|
| Iron ore production (  | million metr  | ic tons) |      |      |       |       |       |       |       |
| Australia              | 62            | 99       | 109  | 176  | 433   | 477   | 520   | 609   | 724   |
| Brazil                 | 38            | 113      | 152  | 209  | 372   | 397   | 380   | 391   | 399   |
| China                  | 55            | 113      | 148  | 105  | 359   | 345   | 336   | 266   | 193   |
| India                  | 34            | 41       | 54   | 75   | 209   | 192   | 153   | 136   | 130   |
| Russian Federation     | n/a           | n/a      | n/a  | 87   | 99    | 104   | 103   | 102   | 101   |
| Ukraine                | n/a           | n/a      | n/a  | 56   | 79    | 81    | 81    | 84    | 82    |
| South Africa           | 10            | n/a      | 30   | 34   | 55    | 53    | 59    | 61    | 67    |
| United States          | 82            | 71       | 55   | 63   | 50    | 55    | 54    | 52    | 54    |
| Iran, Islamic Rep.     | n/a           | n/a      | 2    | 12   | 33    | 36    | 39    | 48    | 48    |
| Canada                 | 43            | 49       | 37   | 36   | 38    | 37    | 39    | 42    | 44    |
| Sweden                 | 34            | 27       | 20   | 21   | 25    | 26    | 27    | 27    | 28    |
| Mexico                 | 5             | 8        | 9    | 11   | 14    | 13    | 15    | 19    | 17    |
| Kazakhstan             | n/a           | n/a      | n/a  | 15   | 18    | 18    | 17    | 19    | 16    |
| Chile                  | 11            | 9        | 8    | 8    | 10    | 12    | 12    | 12    | 13    |
| Mauritania             | 8             | 9        | 11   | 11   | 11    | 11    | 12    | 13    | 13    |
| Peru                   | 9             | 6        | 3    | 4    | 9     | 10    | 11    | 7     | 11    |
| Mongolia               | n/a           | n/a      | n/a  | n/a  | 3     | 6     | 6     | 7     | 10    |
| Malaysia               | 1             | 0        | 0    | 0    | 3     | 8     | 8     | 14    | 9     |
| Turkey                 | 2             | 3        | 6    | 4    | 6     | 6     | 7     | 8     | 7     |
| Venezuela, RB          | 20            | 14       | 20   | 17   | 14    | 20    | 15    | 8     | 6     |
| Liberia                | 23            | 18       | 4    | n/a  | n/a   | 1     | 3     | 4     | 5     |
| Others                 | n/a           | n/a      | n/a  | 14   | 30    | 36    | 36    | 47    | 23    |
| World                  | 781           | 931      | 984  | 959  | 1,870 | 1,944 | 1,931 | 1,977 | 2,001 |
| crude steel production | on (million n |          |      |      |       |       |       |       |       |
| China                  | 21            | 37       | 66   | 129  | 639   | 702   | 731   | 822   | 823   |
| Japan                  | 89            | 111      | 110  | 106  | 110   | 108   | 107   | 111   | 111   |
| United States          | 109           | 101      | 90   | 102  | 80    | 86    | 89    | 87    | 88    |
| India                  | 6             | 10       | 15   | 27   | 69    | 73    | 77    | 81    | 87    |
| Korea, Rep.            | 0             | 9        | 23   | 43   | 59    | 69    | 69    | 66    | 72    |
| Russian Federation     | n/a           | n/a      | n/a  | 59   | 67    | 69    | 70    | 69    | 71    |
| Germany                | 40            | 44       | 38   | 46   | 44    | 44    | 43    | 43    | 43    |
| Turkey                 | 1             | 3        | 9    | 14   | 29    | 34    | 36    | 35    | 34    |
| Brazil                 | 6             | 15       | 21   | 28   | 33    | 35    | 35    | 34    | 34    |
| Ukraine                | n/a           | n/a      | n/a  | 32   | 33    | 35    | 33    | 33    | 27    |
| Italy                  | 17            | 27       | 25   | 27   | 26    | 29    | 27    | 24    | 24    |
| Taiwan, China          | 0             | 3        | 10   | 17   | 20    | 20    | 21    | 22    | 23    |
| Mexico                 | 4             | 7        | 9    | 16   | 17    | 18    | 18    | 18    | 19    |
| Iran, Islamic Rep.     | n/a           | 1        | 1    | 7    | 12    | 13    | 14    | 15    | 16    |
| France                 | 23            | 23       | 19   | 21   | 15    | 16    | 16    | 16    | 16    |
| Spain                  | 8             | 13       | 13   | 16   | 16    | 16    | 14    | 14    | 14    |
| Canada                 | 11            | 16       | 12   | 17   | 13    | 13    | 14    | 12    | 13    |
| Others                 | n/a           | n/a      | n/a  | 143  | 151   | 158   | 147   | 148   | 155   |
| World                  | 583           | 716      | 770  | 849  | 1,433 | 1,538 | 1,560 | 1,650 | 1,670 |

Source: Steel Statistical Yearbook.

Notes: n/a implies data not available.

Lead



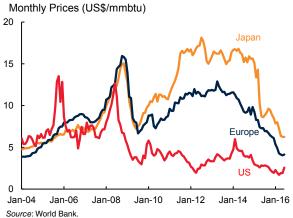

|                                  | 1980         | 1990     | 2000  | 2005  | 2010  | 2012   | 2013   | 2014   | 2015   |
|----------------------------------|--------------|----------|-------|-------|-------|--------|--------|--------|--------|
| Mine Production (thousand        | I metric ton | s)       |       |       |       |        |        |        |        |
| China                            | 160          | 364      | 660   | 1,142 | 1,981 | 2,613  | 2,697  | 2,853  | 2,340  |
| Australia                        | 398          | 570      | 678   | 767   | 712   | 639    | 711    | 728    | 689    |
| United States                    | 562          | 493      | 447   | 437   | 356   | 336    | 343    | 385    | 375    |
| Peru                             | 189          | 188      | 271   | 319   | 262   | 249    | 266    | 278    | 316    |
| Mexico                           | 146          | 174      | 138   | 134   | 192   | 238    | 253    | 250    | 254    |
| Russian Federation               | n/a          | n/a      | 13    | 36    | 97    | 151    | 165    | 194    | 188    |
| India                            | 15           | 26       | 38    | 60    | 91    | 115    | 106    | 105    | 139    |
| Sweden                           | 72           | 84       | 107   | 61    | 68    | 64     | 60     | 71     | 79     |
| Bolivia                          | 16           | 20       | 10    | 11    | 73    | 81     | 82     | 76     | 79     |
| Poland                           | 48           | 45       | 51    | 51    | 48    | 73     | 74     | 77     | 77     |
| Turkey                           | 8            | 18       | 16    | 19    | 39    | 54     | 78     | 65     | 77     |
| Korea, Dem. People's Rep.        | 125          | 70       | 26    | 20    | 27    | 38     | 59     | 45     | 48     |
| Iran, Islamic Rep.               | 12           | 9        | 17    | 22    | 32    | 36     | 40     | 45     | 46     |
| Others                           | n/a          | n/a      | 610   | 372   | 396   | 427    | 384    | 388    | 352    |
| World                            | 3,595        | 3,150    | 3,080 | 3,453 | 4,374 | 5,115  | 5,317  | 5,561  | 5,059  |
| <b>Refined Production (thous</b> | and metric   | tons)    |       |       |       |        |        |        |        |
| China                            | 175          | 297      | 1,100 | 2,359 | 4,157 | 4,591  | 4,935  | 4,740  | 3,858  |
| United States                    | 1,151        | 1,291    | 1,431 | 1,293 | 1,255 | 1,221  | 1,308  | 1,120  | 1,127  |
| Korea, Rep.                      | 15           | 80       | 222   | 254   | 321   | 460    | 522    | 670    | 616    |
| India                            | 26           | 39       | 57    | 56    | 366   | 461    | 462    | 477    | 442    |
| Germany                          | 392          | 394      | 387   | 342   | 405   | 426    | 400    | 380    | 377    |
| United Kingdom                   | 325          | 329      | 328   | 304   | 301   | 312    | 296    | 267    | 351    |
| Mexico                           | 149          | 238      | 332   | 272   | 317   | 334    | 321    | 313    | 310    |
| Canada                           | 231          | 184      | 284   | 230   | 273   | 279    | 284    | 282    | 269    |
| Japan                            | 305          | 327      | 312   | 275   | 267   | 259    | 252    | 240    | 232    |
| Australia                        | 234          | 229      | 223   | 267   | 210   | 206    | 233    | 226    | 223    |
| Italy                            | 134          | 171      | 237   | 211   | 150   | 138    | 180    | 210    | 210    |
| Spain                            | 121          | 124      | 120   | 110   | 163   | 160    | 160    | 162    | 162    |
| Brazil                           | 85           | 76       | 86    | 121   | 115   | 165    | 152    | 160    | 160    |
| Others                           | 2,083        | 1,683    | 1,582 | 1,572 | 1,531 | 1,572  | 1,675  | 1,670  | 1,768  |
| World                            | 5,424        | 5,460    | 6,701 | 7,665 | 9,832 | 10,585 | 11,180 | 10,917 | 10,106 |
| <b>Refined Consumption (tho</b>  | usand metr   | ic tons) |       |       |       |        |        |        |        |
| China                            | 210          | 244      | 660   | 1,974 | 4,171 | 4,618  | 4,927  | 4,718  | 3,816  |
| United States                    | 1,094        | 1,275    | 1,660 | 1,490 | 1,430 | 1,360  | 1,750  | 1,670  | 1,608  |
| Korea, Rep.                      | 54           | 80       | 309   | 376   | 382   | 429    | 550    | 601    | 536    |
| India                            | 33           | 147      | 56    | 139   | 420   | 524    | 428    | 521    | 484    |
| Germany                          | 433          | 448      | 390   | 330   | 343   | 381    | 392    | 337    | 357    |
| Japan                            | 393          | 416      | 343   | 291   | 224   | 273    | 252    | 254    | 263    |
| Italy                            | 275          | 258      | 283   | 262   | 245   | 195    | 235    | 258    | 232    |
| Spain                            | 111          | 115      | 219   | 279   | 262   | 244    | 257    | 245    | 228    |
| Brazil                           | 83           | 75       | 155   | 189   | 201   | 238    | 234    | 229    | 224    |
| Others                           | 2,663        | 2,290    | 2,416 | 2,447 | 2,130 | 2,126  | 2,195  | 2,121  | 2,227  |
| World                            | 5,348        | 5,348    | 6,491 | 7,777 | 9,807 | 10,388 | 11,222 | 10,955 | 9,976  |

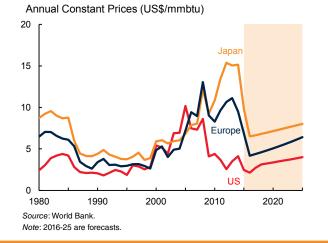
Source: World Bureau of Metal Statistics.

Notes: n/a implies data not available. Refined production and consumption include significant recyled material.






Note: Last observation is June 2016.


|                     | 1970/71     | 1980/81 | 1990/91 | 2000/01 | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
|---------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Production (million | metric ton  | s)      |         |         |         |         |         |         |         |
| United States       | 105.5       | 168.6   | 201.5   | 251.9   | 315.6   | 351.3   | 361.1   | 345.5   | 369.3   |
| China               | 33.0        | 62.6    | 96.8    | 106.0   | 177.2   | 218.5   | 215.6   | 224.6   | 218.0   |
| Brazil              | 14.1        | 22.6    | 24.3    | 41.5    | 57.4    | 80.0    | 85.0    | 70.0    | 80.0    |
| European Union      | 29.8        | 42.5    | 36.5    | 51.8    | 58.6    | 64.9    | 75.8    | 58.0    | 63.8    |
| Argentina           | 9.9         | 12.9    | 7.7     | 15.4    | 25.2    | 26.0    | 28.7    | 28.0    | 34.0    |
| Ukraine             | n/a         | n/a     | 4.7     | 3.8     | 11.9    | 30.9    | 28.5    | 23.3    | 26.0    |
| Mexico              | 8.9         | 10.4    | 14.1    | 17.9    | 21.1    | 22.9    | 25.5    | 25.0    | 24.3    |
| India               | 7.5         | 7.0     | 9.0     | 12.0    | 21.7    | 24.3    | 24.2    | 21.0    | 23.     |
| Russian Federation  | n/a         | n/a     | 2.5     | 1.5     | 3.1     | 11.6    | 11.3    | 13.2    | 14.     |
| South Africa        | 8.6         | 14.9    | 8.6     | 8.0     | 10.9    | 14.9    | 10.6    | 6.5     | 13.     |
| Canada              | 2.6         | 5.8     | 7.1     | 7.0     | 12.0    | 14.2    | 11.5    | 13.6    | 12.     |
| Indonesia           | 2.8         | 4.0     | 5.0     | 5.9     | 6.8     | 9.1     | 9.0     | 9.4     | 9.      |
| Philippines         | 2.0         | 3.1     | 5.1     | 4.5     | 7.3     | 7.5     | 7.7     | 7.5     | 8.      |
| Others              | 73.1        | 96.9    | 95.4    | 64.4    | 107.0   | 115.3   | 119.1   | 114.2   | 115.    |
| World               | 297.9       | 451.3   | 518.4   | 591.7   | 835.9   | 991.4   | 1013.6  | 959.8   | 1010.   |
| Stocks (million met | tric tons)  |         |         |         |         |         |         |         |         |
| China               | 8.9         | 42.8    | 82.8    | 102.4   | 49.4    | 81.3    | 100.5   | 110.6   | 103.    |
| United States       | 16.8        | 35.4    | 38.6    | 48.2    | 28.6    | 31.3    | 44.0    | 43.2    | 52.     |
| Brazil              | 2.0         | 1.3     | 0.8     | 2.7     | 6.3     | 14.0    | 7.8     | 5.3     | 5.      |
| European Union      | 2.3         | 4.8     | 3.7     | 3.2     | 5.2     | 6.9     | 9.4     | 6.3     | 5.      |
| Mexico              | 0.5         | 2.0     | 1.8     | 2.8     | 1.1     | 2.6     | 4.1     | 5.1     | 5.      |
| Others              | 7.9         | 21.0    | 17.4    | 16.0    | 32.9    | 39.7    | 42.7    | 36.3    | 35.     |
| World               | 38.4        | 107.4   | 145.1   | 175.3   | 123.6   | 175.7   | 208.5   | 206.9   | 208.    |
| Exports (million me | etric tons) |         |         |         |         |         |         |         |         |
| United States       | 12.9        | 60.7    | 43.9    | 49.3    | 46.5    | 48.8    | 47.4    | 48.3    | 52.     |
| Argentina           | 6.4         | 9.1     | 4.0     | 9.7     | 16.3    | 17.1    | 18.9    | 19.0    | 23.     |
| Brazil              | 0.9         | 0.0     | 0.0     | 6.3     | 8.4     | 21.0    | 34.5    | 18.5    | 22.     |
| Ukraine             | n/a         | n/a     | 0.4     | 0.4     | 5.0     | 20.0    | 19.7    | 16.0    | 17.     |
| Russian Federation  | n/a         | n/a     | 0.4     | 0.0     | 0.0     | 4.2     | 3.2     | 4.4     | 4.      |
| European Union      | 5.4         | 1.3     | 0.2     | 0.5     | 1.1     | 2.4     | 4.0     | 1.6     | 2.      |
| Paraguay            | 0.0         | 0.0     | 0.0     | 0.6     | 1.6     | 2.4     | 3.3     | 2.3     | 2.      |
| Others              | 11.9        | 10.5    | 9.8     | 10.1    | 12.3    | 15.3    | 10.8    | 9.3     | 10.     |
| World               | 37.6        | 81.6    | 58.5    | 76.7    | 91.3    | 131.2   | 141.7   | 119.4   | 133.    |
| mports (million me  | etric tons) |         |         |         |         |         |         |         |         |
| Japan               | 5.2         | 14.0    | 16.3    | 16.3    | 15.6    | 15.1    | 14.7    | 15.0    | 15.     |
| Mexico              | 0.1         | 3.8     | 1.9     | 6.0     | 8.3     | 10.9    | 11.3    | 13.0    | 13.     |
| European Union      | 18.9        | 26.6    | 5.7     | 3.7     | 7.4     | 16.0    | 8.6     | 13.2    | 11.     |
| Korea, Rep.         | 0.3         | 2.4     | 5.6     | 8.7     | 8.1     | 10.4    | 10.2    | 10.3    | 10.     |
| Egypt, Arab Rep.    | 0.1         | 1.0     | 1.9     | 5.3     | 5.8     | 8.7     | 7.8     | 8.5     | 8.      |
| Vietnam             | 0.1         | 0.1     | 0.0     | 0.1     | 1.3     | 3.5     | 4.9     | 7.3     | 6.      |
| Iran, Islamic Rep.  | 0.0         | 0.4     | 0.8     | 1.3     | 3.5     | 5.5     | 6.2     | 5.5     | 5.      |
| Others              | 22.6        | 52.6    | 32.0    | 33.5    | 42.7    | 54.9    | 61.2    | 61.8    | 57.     |
| World               | 47.3        | 100.9   | 64.3    | 74.9    | 92.7    | 125.1   | 124.9   | 134.6   | 126.    |

Source: U.S. Department of Agriculture (July 2016 update).

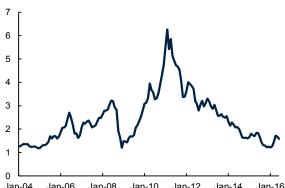
Notes: n/a implies data not available. The trade year is January-December of the later year of the split. For example, 1970/71 refers to calendar year 1971.

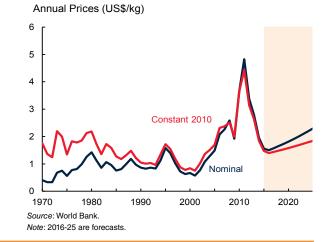
### **Natural gas**





Note: Last observation is June 2016.


|                         | 1970        | 1980  | 1990  | 2000  | 2010  | 2012  | 2013  | 2014  | 2015  |
|-------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Production (billion cub | oic metres) |       |       |       |       |       |       |       |       |
| United States           | 595         | 549   | 504   | 543   | 604   | 681   | 685   | 729   | 767   |
| Russian Federation      | n/a         | n/a   | 590   | 529   | 589   | 592   | 605   | 582   | 573   |
| Iran, Islamic Rep.      | 4           | 5     | 26    | 60    | 152   | 166   | 167   | 182   | 192   |
| Qatar                   | 1           | 5     | 6     | 25    | 131   | 157   | 178   | 174   | 181   |
| Canada                  | 57          | 75    | 109   | 182   | 160   | 156   | 156   | 162   | 164   |
| China                   | 3           | 15    | 16    | 28    | 99    | 112   | 122   | 132   | 138   |
| Norway                  | 0           | 25    | 25    | 50    | 107   | 115   | 109   | 109   | 117   |
| Saudi Arabia            | 2           | 10    | 34    | 50    | 88    | 99    | 100   | 102   | 106   |
| Algeria                 | 3           | 15    | 49    | 88    | 80    | 82    | 82    | 83    | 83    |
| Indonesia               | 1           | 19    | 44    | 70    | 86    | 77    | 76    | 75    | 75    |
| Turkmenistan            | n/a         | n/a   | 79    | 43    | 42    | 62    | 62    | 69    | 72    |
| Malaysia                | 0           | 2     | 17    | 47    | 61    | 61    | 67    | 67    | 68    |
| Australia               | 2           | 11    | 20    | 32    | 53    | 56    | 58    | 61    | 67    |
| Uzbekistan              | n/a         | n/a   | 37    | 51    | 54    | 57    | 57    | 57    | 58    |
| United Arab Emirates    | 1           | 8     | 20    | 38    | 51    | 54    | 55    | 54    | 56    |
| Mexico                  | 11          | 26    | 27    | 38    | 58    | 57    | 58    | 57    | 53    |
| Nigeria                 | 0           | 2     | 4     | 12    | 37    | 43    | 36    | 45    | 50    |
| Egypt, Arab Rep.        | 0           | 2     | 8     | 21    | 61    | 61    | 56    | 49    | 46    |
| Netherlands             | 27          | 76    | 61    | 58    | 70    | 64    | 69    | 56    | 43    |
| Pakistan                | 3           | 7     | 12    | 22    | 42    | 44    | 43    | 42    | 42    |
| Thailand                | 0           | 0     | 7     | 20    | 36    | 41    | 42    | 42    | 40    |
| United Kingdom          | 10          | 35    | 45    | 108   | 57    | 39    | 36    | 37    | 40    |
| Trinidad and Tobago     | 2           | 3     | 5     | 16    | 45    | 43    | 43    | 42    | 40    |
| Others                  | n/a         | n/a   | 235   | 292   | 444   | 443   | 449   | 455   | 467   |
| World                   | 992         | 1,435 | 1,982 | 2,421 | 3,209 | 3,363 | 3,411 | 3,463 | 3,539 |
| Consumption (billion o  | cubic metre | es)   |       |       |       |       |       |       |       |
| United States           | 599         | 563   | 543   | 661   | 682   | 723   | 741   | 756   | 778   |
| Russian Federation      | n/a         | n/a   | 408   | 360   | 414   | 416   | 413   | 412   | 391   |
| China                   | 3           | 15    | 16    | 25    | 111   | 151   | 172   | 188   | 197   |
| Iran, Islamic Rep.      | 3           | 5     | 24    | 63    | 153   | 162   | 163   | 180   | 191   |
| Japan                   | 3           | 24    | 48    | 72    | 95    | 117   | 117   | 118   | 113   |
| Saudi Arabia            | 2           | 10    | 34    | 50    | 88    | 99    | 100   | 102   | 106   |
| Canada                  | 36          | 52    | 67    | 93    | 95    | 100   | 104   | 104   | 102   |
| Mexico                  | 10          | 23    | 28    | 41    | 72    | 80    | 83    | 87    | 83    |
| Germany                 | 15          | 58    | 61    | 79    | 84    | 77    | 81    | 71    | 75    |
| United Arab Emirates    | 1           | 5     | 17    | 31    | 61    | 66    | 67    | 66    | 69    |
| United Kingdom          | 11          | 45    | 52    | 97    | 94    | 74    | 73    | 67    | 68    |
| Italy                   | 14          | 25    | 43    | 65    | 76    | 68    | 64    | 56    | 61    |
| Thailand                | 0           | 0     | 7     | 22    | 45    | 51    | 52    | 53    | 53    |
| India                   | 1           | 1     | 12    | 26    | 61    | 58    | 50    | 51    | 51    |
| Uzbekistan              | n/a         | n/a   | 36    | 46    | 41    | 47    | 47    | 49    | 50    |
| Others                  | n/a         | n/a   | 562   | 691   | 1,029 | 1,043 | 1,065 | 1,050 | 1,078 |
| World                   | 979         | 1,433 | 1,956 | 2,422 | 3,201 | 3,333 | 3,393 | 3,410 | 3,469 |


Source: BP Statistical Review.

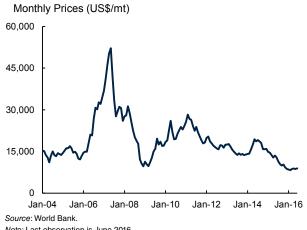
Note: n/a implies data not available.

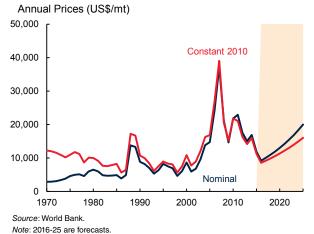
### **Natural rubber**








Jan-04 Jan-06 Jan-08 Jan-10 Jan-12 Jan-14 Jan-16 *Source*: World Bank.


Note: Last observation is June 2016.

|                    | 1970          | 1980  | 1990  | 2000  | 2010   | 2012   | 2013   | 2014   | 2015            |
|--------------------|---------------|-------|-------|-------|--------|--------|--------|--------|-----------------|
| Production (thousa | nd metric tor | ıs)   |       |       |        |        |        |        |                 |
| Thailand           | 287           | 501   | 1,275 | 2,346 | 3,252  | 3,778  | 4,170  | 4,324  | 4,473           |
| Indonesia          | 815           | 822   | 1,261 | 1,501 | 2,736  | 3,012  | 3,237  | 3,153  | 3,175           |
| Vietnam            | 28            | 46    | 94    | 291   | 752    | 877    | 949    | 954    | 1,017           |
| China              | 46            | 113   | 264   | 445   | 687    | 802    | 865    | 840    | 794             |
| Malaysia           | 1,269         | 1,530 | 1,291 | 928   | 939    | 923    | 827    | 668    | 722             |
| India              | 90            | 155   | 324   | 629   | 851    | 919    | 796    | 705    | 575             |
| Côte d'Ivoire      | 11            | 23    | 69    | 123   | 231    | 254    | 289    | 317    | 351             |
| Myanmar            | 10            | 16    | 15    | 36    | 128    | 164    | 177    | 198    | 228             |
| Others             | 584           | 644   | 392   | 513   | 827    | 929    | 971    | 956    | 980             |
| World              | 3,140         | 3,850 | 4,985 | 6,811 | 10,403 | 11,658 | 12,281 | 12,115 | 12,314          |
| Consumption (thou  | sand metric   | tons) |       |       |        |        |        |        |                 |
| China              | 250           | 340   | 600   | 1,150 | 3,622  | 3,890  | 4,210  | 4,760  | 4,680           |
| European Union     | 991           | 1,007 | 1,012 | 1,293 | 1,136  | 1,076  | 1,060  | 1,139  | 1,159           |
| India              | 86            | 171   | 358   | 638   | 944    | 988    | 962    | 1,015  | 987             |
| United States      | 568           | 585   | 808   | 1,195 | 926    | 950    | 913    | 932    | 936             |
| Japan              | 283           | 427   | 677   | 752   | 749    | 728    | 710    | 709    | 691             |
| Thailand           | 8             | 28    | 99    | 243   | 487    | 505    | 521    | 541    | 60 <sup>-</sup> |
| Indonesia          | 25            | 46    | 108   | 139   | 421    | 465    | 509    | 540    | 579             |
| Malaysia           | 20            | 45    | 184   | 364   | 458    | 441    | 434    | 447    | 475             |
| Brazil             | 37            | 81    | 124   | 227   | 378    | 343    | 409    | 422    | 40              |
| Korea, Rep.        | 26            | 118   | 255   | 332   | 384    | 396    | 396    | 402    | 388             |
| Others             | 796           | 932   | 845   | 975   | 1,253  | 1,264  | 1,246  | 1,230  | 1,267           |
| World              | 3,090         | 3,780 | 5,068 | 7,306 | 10,759 | 11,046 | 11,370 | 12,137 | 12,167          |
| Exports (thousand  | metric tons)  |       |       |       |        |        |        |        |                 |
| Thailand           | 279           | 457   | 1,151 | 2,166 | 2,866  | 3,175  | 3,752  | 3,729  | 3,776           |
| Indonesia          | 790           | 976   | 1,077 | 1,380 | 2,369  | 2,525  | 2,770  | 2,662  | 2,680           |
| Vietnam            | 23            | 33    | 80    | 273   | 782    | 1,023  | 1,076  | 1,066  | 1,138           |
| Malaysia           | 1,304         | 1,482 | 1,322 | 978   | 1,245  | 1,291  | 1,332  | 1,192  | 1,119           |
| Côte d'Ivoire      | 11            | 23    | 69    | 121   | 226    | 255    | 285    | 323    | 348             |
| Others             | 413           | 299   | 263   | 359   | 558    | 602    | 672    | 861    | 1,126           |
| World              | 2,820         | 3,270 | 3,962 | 5,277 | 8,047  | 8,871  | 9,887  | 9,833  | 10,187          |
| mports (thousand   | metric tons)  |       |       |       |        |        |        |        |                 |
| China              | 178           | 242   | 340   | 820   | 2,888  | 3,426  | 3,975  | 4,096  | 4,144           |
| European Union     | 1,071         | 1,068 | 1,072 | 1,474 | 1,427  | 1,459  | 1,451  | 1,546  | 1,536           |
| Malaysia           | 45            | 43    | 136   | 548   | 706    | 871    | 1,005  | 914    | 955             |
| United States      | 543           | 576   | 820   | 1,192 | 931    | 969    | 927    | 946    | 952             |
| Japan              | 292           | 458   | 663   | 801   | 747    | 700    | 722    | 689    | 682             |
| India              | 3             | 1     | 61    | 11    | 187    | 250    | 336    | 424    | 414             |
| Korea, Rep.        | 26            | 118   | 254   | 331   | 388    | 397    | 396    | 403    | 388             |
| Brazil             | 11            | 56    | 95    | 139   | 249    | 181    | 224    | 230    | 208             |
| Others             | 641           | 673   | 1,328 | 1,065 | 1,157  | 1,307  | 1,235  | 1.251  | 1.354           |
| World              | 2,810         | 3,235 | 4,769 | 6,380 | 8,681  | 9,561  | 10,271 | 10,499 | 10,634          |

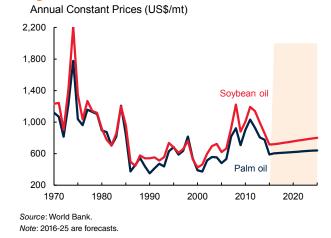
Source: International Rubber Study Group (April-June 2016 update).

### **Nickel**





| Note: Last observation is June 201 | 16.        |            |       | 700   | te: 2016-25 are f | orecasis. |       |       |       |
|------------------------------------|------------|------------|-------|-------|-------------------|-----------|-------|-------|-------|
|                                    | 1980       | 1990       | 2000  | 2005  | 2010              | 2012      | 2013  | 2014  | 2015  |
| Mine Production (tho               | usand me   | tric tons) |       |       |                   |           |       |       |       |
| Philippines                        | 38         | 16         | 17    | 27    | 184               | 318       | 316   | 411   | 317   |
| Russian Federation                 | n/a        | n/a        | 266   | 289   | 274               | 269       | 264   | 264   | 264   |
| Canada                             | 189        | 196        | 191   | 200   | 160               | 212       | 223   | 235   | 235   |
| Australia                          | 74         | 67         | 170   | 186   | 170               | 244       | 256   | 245   | 220   |
| New Caledonia                      | 87         | 85         | 129   | 112   | 130               | 132       | 150   | 178   | 186   |
| Indonesia                          | 41         | 69         | 117   | 156   | 216               | 622       | 811   | 146   | 106   |
| China                              | 11         | 33         | 51    | 59    | 80                | 93        | 93    | 92    | 92    |
| Brazil                             | 3          | 13         | 32    | 38    | 54                | 90        | 74    | 86    | 83    |
| South Africa                       | 26         | 30         | 37    | 42    | 40                | 46        | 51    | 55    | 57    |
| Cuba                               | 38         | 41         | 71    | 74    | 65                | 65        | 62    | 50    | 49    |
| Madagascar                         | 0          | 0          | 0     | 0     | 0                 | 6         | 25    | 37    | 47    |
| Guatemala                          | 7          | 0          | 0     | 0     | 0                 | 2         | 9     | 36    | 46    |
| Colombia                           | 0          | 0          | 28    | 53    | 49                | 52        | 49    | 41    | 37    |
| Others                             | n/a        | n/a        | 82    | 120   | 95                | 117       | 118   | 131   | 145   |
| World                              | 749        | 888        | 1,191 | 1,356 | 1,518             | 2,266     | 2,504 | 2,006 | 1,884 |
| Refined Production (               | thousand   | metric tor | ns)   |       |                   |           |       |       |       |
| China                              | 11         | 28         | 52    | 97    | 314               | 591       | 711   | 644   | 575   |
| Russian Federation                 | n/a        | n/a        | 242   | 264   | 263               | 254       | 242   | 239   | 233   |
| Japan                              | 109        | 103        | 161   | 164   | 166               | 170       | 178   | 178   | 193   |
| Canada                             | 145        | 127        | 134   | 140   | 105               | 152       | 153   | 151   | 163   |
| Australia                          | 35         | 43         | 112   | 122   | 102               | 129       | 142   | 138   | 128   |
| Norway                             | 37         | 58         | 59    | 85    | 92                | 92        | 91    | 91    | 91    |
| New Caledonia                      | 33         | 32         | 44    | 47    | 40                | 45        | 48    | 62    | 78    |
| Brazil                             | 3          | 13         | 23    | 30    | 28                | 59        | 56    | 73    | 72    |
| Madagascar                         | 0          | 0          | 0     | 0     | 0                 | 6         | 25    | 37    | 47    |
| Finland                            | 13         | 17         | 54    | 41    | 49                | 46        | 44    | 43    | 43    |
| United Kingdom                     | 19         | 27         | 38    | 38    | 32                | 39        | 42    | 39    | 39    |
| Korea, Rep.                        | n/a        | n/a        | 0     | 0     | 23                | 24        | 28    | 25    | 37    |
| Colombia                           | 0          | 18         | 28    | 53    | 49                | 52        | 49    | 41    | 37    |
| Others                             | n/a        | n/a        | 164   | 208   | 174               | 200       | 194   | 186   | 181   |
| World                              | 743        | 858        | 1,110 | 1,288 | 1,437             | 1,858     | 2,005 | 1,946 | 1,916 |
| Refined Consumption                | n (thousar | nd metric  | tons) |       |                   |           |       |       |       |
| China                              | 18         | 28         | 58    | 197   | 489               | 805       | 909   | 761   | 964   |
| Japan                              | 122        | 159        | 192   | 180   | 177               | 159       | 159   | 157   | 159   |
| United States                      | 142        | 127        | 153   | 128   | 119               | 126       | 123   | 152   | 152   |
| Taiwan, China                      | 0          | 18         | 106   | 84    | 73                | 57        | 53    | 66    | 87    |
| Korea, Rep.                        | 0          | 24         | 91    | 118   | 101               | 108       | 107   | 100   | 83    |
| Italy                              | 27         | 27         | 53    | 85    | 62                | 65        | 59    | 60    | 60    |
| Germany                            | 78         | 93         | 102   | 116   | 100               | 89        | 66    | 62    | 60    |
| India                              | 12         | 14         | 23    | 16    | 27                | 33        | 37    | 27    | 37    |
| Belgium                            | 4          | 21         | 32    | 50    | 21                | 19        | 26    | 29    | 35    |
| Others                             | n/a        | n/a        | 342   | 344   | 257               | 275       | 259   | 285   | 295   |
| World                              | 717        | 842        | 1,150 | 1,317 | 1,427             | 1,734     | 1,798 | 1,700 | 1,933 |


Note: Last observation is June 2016.

Source: World Bureau of Metal Statistics.

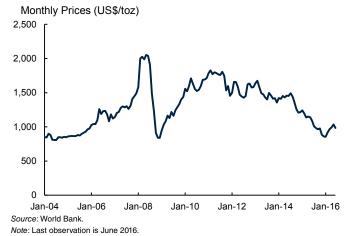
Note: n/a implies data not available.

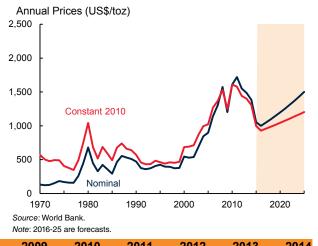
### Palm oil and Soybean oil





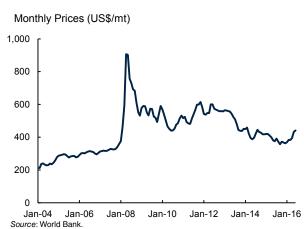
Source: World Bank.


Note: Last observation is June 2016.

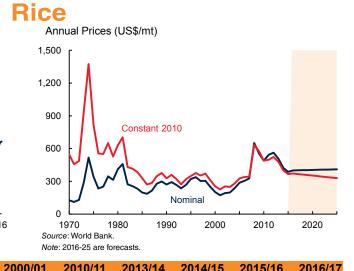

|                     | 1970/71      | 1980/81      | 1990/91   | 2000/01 | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
|---------------------|--------------|--------------|-----------|---------|---------|---------|---------|---------|---------|
| Palm oil: productio | n (thousand  | metric ton   | s)        |         | · · ·   |         |         |         |         |
| Indonesia           | 248          | 752          | 2,650     | 8,300   | 23,600  | 28,500  | 30,500  | 33,000  | 33,000  |
| Malaysia            | 589          | 2,692        | 6,031     | 11,937  | 18,211  | 19,321  | 20,161  | 19,879  | 20,500  |
| Thailand            | 0            | 19           | 200       | 580     | 1,832   | 2,135   | 2,000   | 1,800   | 2,200   |
| Colombia            | 36           | 80           | 252       | 520     | 753     | 974     | 1,041   | 1,110   | 1,130   |
| Nigeria             | 432          | 520          | 600       | 730     | 971     | 970     | 970     | 970     | 970     |
| Papua New Guinea    | 0            | 45           | 145       | 336     | 488     | 520     | 500     | 520     | 580     |
| Ecuador             | 5            | 44           | 150       | 222     | 380     | 540     | 565     | 485     | 510     |
| Ghana               | 21           | 19           | 24        | 108     | 426     | 471     | 493     | 495     | 500     |
| Honduras            | 0            | 18           | 64        | 148     | 320     | 425     | 460     | 470     | 490     |
| Guatemala           | 0            | 0            | 6         | 124     | 231     | 365     | 434     | 448     | 470     |
| Others              | 591          | 707          | 912       | 1,234   | 2,027   | 2,201   | 2,259   | 2,255   | 2,325   |
| World               | 1,922        | 4,896        | 11,034    | 24,239  | 49,239  | 56,422  | 59,383  | 61,432  | 62,675  |
| Palm oil: consumpt  | ion (thousa  | nd metric to | ons)      |         |         |         |         |         |         |
| India               | 1            | 431          | 259       | 4,100   | 7,090   | 8,250   | 8,412   | 9,009   | 9,925   |
| Indonesia           | 29           | 561          | 1,330     | 3,263   | 6,414   | 7,852   | 9,020   | 7,620   | 8,620   |
| European Union      | 595          | 607          | 1,509     | 2,790   | 5,110   | 6,560   | 6,790   | 6,700   | 6,850   |
| China               | 53           | 16           | 1,194     | 2,028   | 5,797   | 6,389   | 5,669   | 5,726   | 5,750   |
| Malaysia            | 8            | 420          | 914       | 1,571   | 2,204   | 2,451   | 2,868   | 2,950   | 3,280   |
| Pakistan            | 1            | 231          | 800       | 1,245   | 2,077   | 2,285   | 2,490   | 2,820   | 3,185   |
| Others              | 1,707        | 3,104        | 6,658     | 8,618   | 19,125  | 21,363  | 22,688  | 23,730  | 24,790  |
| World               | 2,394        | 5,370        | 12,664    | 23,615  | 47,817  | 55,150  | 57,937  | 58,555  | 62,400  |
| Soybean oil: produ  | ction (thous | and metric   | tons)     |         |         |         |         |         |         |
| China               | 181          | 183          | 599       | 3,240   | 9,840   | 11,626  | 12,335  | 13,347  | 14,458  |
| United States       | 3.749        | 5,112        | 6,082     | 8,355   | 8,568   | 8,990   | 9,131   | 9,706   | 9,945   |
| Argentina           | 0            | 158          | 1,179     | 3,190   | 7,181   | 6,364   | 6,785   | 7,687   | 8,150   |
| Brazil              | n/a          | 2,601        | 2,669     | 4,333   | 6,970   | 6,760   | 7,070   | 7,660   | 7,680   |
| European Union      | 1,260        | 2,478        | 2,317     | 3,033   | 2,362   | 2,501   | 2,553   | 2,698   | 2,810   |
| India               | 2            | 69           | 425       | 805     | 1,646   | 1,752   | 1,478   | 1,245   | 1,150   |
| Paraguay            | 10           | 6            | 56        | 174     | 300     | 564     | 640     | 697     | 783     |
| Mexico              | 52           | 255          | 330       | 795     | 648     | 653     | 720     | 745     | 780     |
| Others              | 2,205        | 4,191        | 4,425     | 2,888   | 3,835   | 3,890   | 4,310   | 5,206   | 5,702   |
| World               | 7,459        | 15,053       | 18,082    | 26,813  | 41,350  | 43,100  | 45,022  | 48,991  | 51,458  |
| Soybean oil: consu  | mption (tho  | usand meti   | ric tons) |         |         |         |         |         |         |
| China               | 179          | 256          | 1,055     | 3,542   | 11,409  | 12,545  | 13,657  | 14,126  | 15,228  |
| United States       | 2,854        | 4,134        | 5,506     | 7,401   | 7,506   | 8,522   | 8,576   | 8,616   | 8,890   |
| Brazil              | n/a          | 1,490        | 2,075     | 2,932   | 5,205   | 5,534   | 5,705   | 6,275   | 6,365   |
| India               | 79           | 708          | 445       | 2,080   | 2,610   | 2,950   | 3,300   | 4,050   | 4,700   |
| Argentina           | 0            | 56           | 101       | 247     | 2,520   | 2,275   | 2,729   | 2,601   | 2,440   |
| European Union      | 1,170        | 1,926        | 1,879     | 2,186   | 2,530   | 1,908   | 1,970   | 2,000   | 2,000   |
| Mexico              | 52           | 305          | 404       | 863     | 840     | 860     | 890     | 1,001   | 1,020   |
| Iran, Islamic Rep.  | 95           | 343          | 431       | 873     | 620     | 600     | 630     | 720     | 800     |
| Others              | 2,699        | 5,120        | 5,417     | 6,335   | 7,351   | 7,430   | 7,719   | 8,588   | 9,126   |
| World               | 7,128        | 14,338       | 17,313    | 26,459  | 40,591  | 42,624  | 45,176  | 47,977  | 50,569  |

Source: U.S. Department of Agriculture (July 2016 update).

Notes: The trade year is January-December of the later year of the split. For example, 1970/71 refers to calendar year 1971.


**Platinum** 



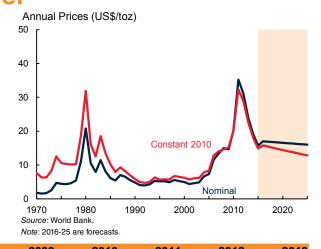



|                                  | 2003  | 2005  | 2008  | 2009  | 2010  | 2011  | 2012  | 2013  | 2014  |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Mine production (metric tons)    |       |       |       |       |       |       |       |       |       |
| Canada                           | 4.6   | 7.2   | 7.1   | 5.3   | 4.0   | 8.4   | 6.9   | 6.8   | 7.7   |
| Russian Federation               | 25.9  | 29.9  | 25.8  | 24.7  | 24.4  | 25.4  | 25.0  | 23.8  | 22.3  |
| South Africa                     | 146.1 | 157.2 | 145.4 | 143.2 | 147.7 | 147.3 | 130.3 | 133.3 | 95.2  |
| United States                    | 4.2   | 3.9   | 3.6   | 3.8   | 3.5   | 3.7   | 3.7   | 3.7   | 3.7   |
| Zimbabwe                         | 4.3   | 5.0   | 5.6   | 7.1   | 8.9   | 10.6  | 10.4  | 12.7  | 12.4  |
| Others                           | 2.3   | 2.8   | 4.0   | 4.0   | 3.8   | 3.7   | 4.2   | 4.8   | 4.8   |
| World                            | 187.4 | 206.0 | 191.5 | 188.1 | 192.3 | 199.1 | 180.5 | 185.1 | 146.1 |
| Autocatalyst scrap (metric tons) |       |       |       |       |       |       |       |       |       |
| China                            | n/a   | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.7   | 0.9   | 13.4  |
| Europe                           | 3.9   | 5.4   | 9.2   | 8.0   | 9.3   | 10.8  | 9.7   | 11.6  | 12.1  |
| Japan                            | 2.1   | 1.7   | 2.1   | 1.7   | 1.9   | 1.7   | 1.8   | 1.8   | 2.1   |
| North America                    | 15.1  | 15.6  | 17.3  | 12.2  | 14.0  | 14.8  | 12.8  | 14.4  | 1.1   |
| Others                           | 1.8   | 2.3   | 2.5   | 2.2   | 2.5   | 3.1   | 3.8   | 3.9   | 4.1   |
| World                            | 22.9  | 25.1  | 31.3  | 24.4  | 28.1  | 30.9  | 28.8  | 32.6  | 32.8  |
| Old jewelery scrap (metric tons) |       |       |       |       |       |       |       |       |       |
| China                            | 0.9   | 5.1   | 10.4  | 5.5   | 6.7   | 7.5   | 7.3   | 7.3   | 7.8   |
| Europe                           | 0.1   | 0.1   | 0.4   | 0.4   | 0.3   | 0.2   | 0.2   | 0.2   | 7.6   |
| Japan                            | 4.0   | 6.0   | 18.0  | 8.5   | 8.7   | 10.7  | 8.0   | 7.3   | 0.3   |
| North America                    | 0.1   | 0.2   | 1.3   | 1.0   | 0.4   | 0.3   | 0.3   | 0.3   | 0.2   |
| Others                           | 0.1   | 0.1   | 0.0   | 0.0   | 0.1   | 0.1   | 0.1   | 0.2   | 0.2   |
| World                            | 5.2   | 11.5  | 30.1  | 15.4  | 16.2  | 18.8  | 15.9  | 15.3  | 16.1  |
| TOTAL SUPPLY (metric tons)       | 215.5 | 242.6 | 252.8 | 228.0 | 236.6 | 248.9 | 225.2 | 233.0 | 195.0 |
| Autocatalyst demand (metric tons | 5)    |       |       |       |       |       |       |       |       |
| China                            | 4.7   | 5.5   | 5.8   | 5.9   | 6.9   | 6.2   | 5.8   | 7.0   | 40.0  |
| Europe                           | 41.3  | 56.1  | 56.2  | 39.8  | 43.9  | 46.2  | 39.5  | 38.5  | 14.0  |
| Japan                            | 16.6  | 18.1  | 16.1  | 9.6   | 11.4  | 9.4   | 10.0  | 9.0   | 8.8   |
| North America                    | 26.8  | 23.3  | 17.5  | 10.8  | 12.0  | 14.1  | 14.3  | 14.4  | 8.7   |
| Others                           | 8.0   | 12.5  | 13.9  | 11.9  | 17.1  | 19.0  | 21.0  | 21.2  | 21.9  |
| World                            | 97.4  | 115.5 | 109.5 | 78.0  | 91.3  | 94.9  | 90.6  | 90.1  | 93.4  |
| Jewelery demand (metric tons)    |       |       |       |       |       |       |       |       |       |
| China                            | 46.1  | 35.0  | 34.5  | 60.8  | 44.8  | 49.4  | 54.0  | 55.2  | 52.3  |
| Europe                           | 8.5   | 7.9   | 7.4   | 6.9   | 6.8   | 6.7   | 6.6   | 6.6   | 10.0  |
| Japan                            | 21.3  | 20.5  | 7.7   | 8.4   | 8.1   | 8.8   | 9.9   | 10.2  | 7.6   |
| North America                    | 9.9   | 8.1   | 6.4   | 5.6   | 6.6   | 6.8   | 7.0   | 7.3   | 6.4   |
| Others                           | 2.4   | 1.2   | 1.4   | 1.6   | 2.2   | 2.6   | 3.3   | 3.4   | 3.6   |
| World                            | 88.2  | 72.7  | 57.4  | 83.3  | 68.5  | 74.3  | 80.8  | 82.7  | 79.9  |
| Other demand (metric tons)       |       |       |       |       |       |       |       |       |       |
| China                            | n/a   | 4.7   | 9.1   | 1.0   | 10.1  | 7.5   | 11.3  | 10.9  | 14.7  |
| Europe                           | 11.1  | 9.5   | 10.1  | 8.9   | 10.1  | 9.7   | 10.3  | 9.7   | 10.8  |
| Japan                            | 9.9   | 13.2  | 18.2  | 9.0   | 10.2  | 13.5  | 11.0  | 1.7   | 8.4   |
| North America                    | 15.8  | 15.8  | 15.2  | 14.7  | 12.2  | 12.5  | 14.3  | 13.9  | 2.7   |
| Others                           | 14.0  | 14.0  | 18.4  | 15.0  | 20.7  | 20.9  | 13.7  | 13.5  | 16.7  |
| World                            | 50.8  | 57.2  | 71.0  | 48.6  | 63.3  | 64.1  | 60.6  | 49.7  | 53.3  |
| TOTAL DEMAND (metric tons)       | 236.4 | 245.4 | 237.9 | 209.9 | 223.1 | 233.3 | 232.0 | 222.5 | 226.6 |

Sources: Platinum & Palladium Survey, Thomson Reuters.



Note: Last observation is June 2016.



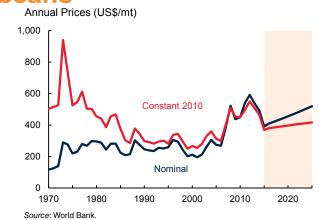

|                    | 1970/71      | 1980/81 | 1990/91 | 2000/01 | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
|--------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Production (millio | n metric to  | ons)    |         |         |         |         |         |         |         |
| China              | 77.0         | 97.9    | 132.5   | 131.5   | 137.0   | 142.5   | 144.6   | 145.8   | 146.5   |
| India              | 42.2         | 53.6    | 74.3    | 85.0    | 96.0    | 106.6   | 105.5   | 103.5   | 105.0   |
| Indonesia          | 13.1         | 22.3    | 29.0    | 33.0    | 35.5    | 36.3    | 35.6    | 35.3    | 36.6    |
| Bangladesh         | 11.1         | 13.9    | 17.9    | 25.1    | 31.7    | 34.4    | 34.5    | 34.5    | 34.6    |
| Vietnam            | 6.4          | 7.7     | 12.4    | 20.5    | 26.4    | 28.2    | 28.2    | 28.1    | 28.5    |
| Thailand           | 9.0          | 11.5    | 11.3    | 17.1    | 20.3    | 20.5    | 18.8    | 15.8    | 17.0    |
| Myanmar            | 5.1          | 6.7     | 7.9     | 10.8    | 11.1    | 12.0    | 12.6    | 12.2    | 12.5    |
| Philippines        | 3.4          | 5.0     | 6.4     | 8.1     | 10.5    | 11.9    | 11.9    | 11.4    | 12.0    |
| Brazil             | 3.7          | 5.9     | 6.8     | 6.9     | 9.3     | 8.3     | 8.5     | 7.1     | 8.5     |
| United States      | 2.8          | 4.8     | 5.1     | 5.9     | 7.6     | 6.1     | 7.1     | 6.1     | 7.8     |
| Japan              | 11.5         | 8.9     | 9.6     | 8.6     | 7.8     | 7.9     | 7.8     | 7.7     | 7.7     |
| Pakistan           | 2.2          | 3.1     | 3.3     | 4.8     | 4.8     | 6.8     | 6.9     | 6.7     | 6.9     |
| Cambodia           | 2.5          | 1.1     | 1.6     | 2.5     | 4.2     | 4.7     | 4.7     | 4.4     | 4.7     |
| Others             | 22.9         | 27.6    | 33.3    | 39.4    | 48.3    | 52.3    | 52.2    | 52.2    | 53.0    |
| World              | 213.0        | 269.9   | 351.4   | 399.3   | 450.4   | 478.4   | 478.7   | 470.6   | 481.2   |
| Stocks (million me | etric tons)  |         |         |         |         |         |         |         |         |
| China              | 11.0         | 28.0    | 94.0    | 93.0    | 42.6    | 53.1    | 57.4    | 62.4    | 68.6    |
| India              | 6.0          | 6.5     | 14.5    | 25.1    | 23.5    | 22.8    | 17.8    | 13.8    | 11.     |
| Thailand           | 1.2          | 2.0     | 0.9     | 2.2     | 5.6     | 11.9    | 10.6    | 6.1     | 3.2     |
| Indonesia          | 0.6          | 3.0     | 2.1     | 4.6     | 7.1     | 5.5     | 4.1     | 3.2     | 2.9     |
| Philippines        | 0.6          | 1.5     | 1.8     | 2.8     | 2.5     | 1.7     | 2.2     | 2.0     | 2.2     |
| Japan              | 6.1          | 4.0     | 1.0     | 2.6     | 2.9     | 3.0     | 2.8     | 2.5     | 2.1     |
| Others             | 3.4          | 7.6     | 12.4    | 16.4    | 15.9    | 15.8    | 19.6    | 16.8    | 16.1    |
| World              | 28.8         | 52.6    | 126.7   | 146.7   | 100.0   | 113.8   | 114.5   | 106.7   | 107.3   |
| Exports (million m | netric tons) |         |         |         |         |         |         |         |         |
| Thailand           | 1.6          | 3.0     | 4.0     | 7.5     | 10.6    | 11.0    | 9.8     | 9.8     | 9.0     |
| India              | 0.0          | 0.9     | 0.7     | 1.7     | 2.8     | 10.6    | 12.2    | 9.2     | 8.5     |
| Vietnam            | 0.0          | 0.0     | 1.0     | 3.5     | 7.0     | 6.3     | 6.6     | 6.9     | 7.0     |
| Pakistan           | 0.2          | 1.2     | 1.3     | 2.4     | 3.4     | 4.0     | 3.8     | 4.5     | 4.3     |
| United States      | 1.5          | 3.1     | 2.3     | 2.6     | 3.5     | 3.0     | 3.2     | 3.3     | 3.7     |
| Others             | 5.2          | 4.2     | 2.8     | 6.2     | 7.8     | 8.1     | 8.2     | 7.6     | 8.1     |
| World              | 8.5          | 12.4    | 12.1    | 24.0    | 35.1    | 43.0    | 43.8    | 41.3    | 40.5    |
| mports (million m  | otric tons)  |         |         |         |         |         |         |         |         |
| China              | 0.0          | 0.2     | 0.1     | 0.3     | 0.5     | 4.0     | 4.7     | 5.0     | 5.0     |
| Nigeria            | 0.0          | 0.4     | 0.2     | 1.3     | 2.4     | 2.8     | 2.7     | 2.2     | 2.0     |
| European Union     | 0.9          | 0.5     | 0.7     | 1.2     | 1.4     | 1.5     | 1.7     | 1.6     | 1.6     |
| Saudi Arabia       | 0.2          | 0.4     | 0.5     | 1.0     | 1.1     | 1.5     | 1.6     | 1.6     | 1.0     |
| Philippines        | 0.2          | 0.4     | 0.3     | 1.0     | 1.1     | 1.2     | 1.8     | 1.6     | 1.6     |
| Indonesia          | 0.0          | 0.0     | 0.4     | 1.4     | 3.1     | 1.2     | 1.4     | 1.0     | 1.3     |
| Iraq               | 0.5          | 0.4     | 0.2     | 1.0     | 1.2     | 1.2     | 1.4     | 1.9     | 1.2     |
| Iran, Islamic Rep. | 0.1          | 0.4     | 0.6     | 0.8     | 2.0     | 1.5     | 1.4     | 1.2     | 1.2     |
| Others             | 6.8          | 8.8     | 8.3     | 13.7    | 2.0     | 23.9    | 24.7    | 23.0    | 23.0    |
|                    | 0.0          | 0.0     | 0.3     | 13.1    | 20.1    | 23.9    | 24.1    | 23.0    | 23.0    |

Source: U.S. Department of Agriculture (July 2016 update).

Notes: The trade year is January-December of the later year of the split. For example, 1970/71 refers to calendar year 1971.






Jan-04 Jan-06 Jan-08 Jan-10 Jan-12 Jan-14 Jan-16 Source: World Bank. Note: Last observation is June 2016.

|                        | 1995   | 2000   | 2005   | 2009   | 2010   | 2011   | 2012   | 2013   |
|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| roduction (metric tons | 5)     |        |        |        |        |        |        |        |
| Mexico                 | 2,334  | 2,483  | 2,894  | 3,554  | 4,411  | 4,778  | 5,358  | 5,821  |
| Peru                   | 1,881  | 2,418  | 3,193  | 3,854  | 3,640  | 3,414  | 3,481  | 3,674  |
| China                  | 1,000  | 1,600  | 2,500  | 2,900  | 3,085  | 3,232  | 3,639  | 3,673  |
| Australia              | 920    | 2,060  | 2,417  | 1,633  | 1,880  | 1,725  | 1,728  | 1,840  |
| Russian Federation     | 250    | 400    | 1,350  | 1,313  | 1,145  | 1,134  | 1,400  | 1,412  |
| Poland                 | 1,001  | 1,164  | 1,262  | 1,207  | 1,183  | 1,167  | 1,149  | 1,403  |
| Bolivia                | 425    | 434    | 420    | 1,326  | 1,259  | 1,214  | 1,207  | 1,287  |
| Chile                  | 1,036  | 1,245  | 1,400  | 1,301  | 1,276  | 1,311  | 1,151  | 1,174  |
| United States          | 1,565  | 2,017  | 1,230  | 1,250  | 1,280  | 1,120  | 1,060  | 1,050  |
| Kazakhstan             | 371    | 927    | 883    | 618    | 552    | 651    | 963    | 964    |
| Argentina              | 48     | 78     | 264    | 533    | 723    | 641    | 750    | 768    |
| Canada                 | 1,285  | 1,204  | 1,124  | 631    | 596    | 572    | 705    | 618    |
| India                  | 38     | 40     | 32     | 138    | 165    | 203    | 374    | 367    |
| Sweden                 | 268    | 329    | 310    | 289    | 302    | 302    | 309    | 341    |
| Guatemala              | 0      | 0      | 7      | 129    | 195    | 273    | 205    | 284    |
| Morocco                | 204    | 290    | 186    | 210    | 243    | 227    | 230    | 255    |
| Turkey                 | 70     | 110    | 80     | 352    | 348    | 292    | 236    | 187    |
| Finland                | 29     | 24     | 47     | 70     | 65     | 73     | 128    | 101    |
| Dominican Republic     | 21     | n/a    | n/a    | 19     | 23     | 19     | 23     | 80     |
| Others                 | 1,436  | 1,372  | 1,099  | 1,002  | 1,069  | 1,042  | 1,088  | 1,061  |
| World                  | 14,183 | 18,194 | 20,697 | 22,328 | 23,440 | 23,389 | 25,185 | 26,362 |
| brication (metric tons | 5)     |        |        |        |        |        |        |        |
| China                  | n/a    | n/a    | 1,054  | 1,457  | 1,681  | 1,952  | 2,029  | 2,266  |
| India                  | n/a    | n/a    | 1,333  | 1,164  | 1,233  | 1,194  | 1,196  | 2,248  |
| Thailand               | n/a    | n/a    | 1,145  | 946    | 947    | 798    | 662    | 692    |
| Italy                  | n/a    | n/a    | 1,230  | 806    | 802    | 599    | 540    | 559    |
| United States          | n/a    | n/a    | 487    | 362    | 400    | 370    | 342    | 381    |
| Mexico                 | n/a    | n/a    | 511    | 355    | 344    | 450    | 428    | 281    |
| Russian Federation     | n/a    | n/a    | 138    | 263    | 291    | 240    | 228    | 225    |
| Indonesia              | n/a    | n/a    | 140    | 150    | 168    | 190    | 207    | 215    |
| South Korea            | n/a    | n/a    | 147    | 150    | 167    | 179    | 183    | 186    |
| Turkey                 | n/a    | n/a    | 258    | 175    | 153    | 134    | 139    | 162    |
| Germany                | n/a    | n/a    | 213    | 166    | 169    | 159    | 147    | 134    |
| Brazil                 | n/a    | n/a    | 50     | 57     | 64     | 50     | 50     | 94     |
| Japan                  | n/a    | n/a    | 64     | 65     | 70     | 69     | 72     | 75     |
| France                 | n/a    | n/a    | 55     | 59     | 64     | 73     | 67     | 56     |
| Vietnam                | n/a    | n/a    | 32     | 40     | 45     | 49     | 50     | 49     |
| Iran, Islamic Rep.     | n/a    | n/a    | 50     | 44     | 43     | 40     | 37     | 39     |
| Israel                 | n/a    | n/a    | 59     | 46     | 42     | 32     | 29     | 34     |
| Spain                  | n/a    | n/a    | 61     | 41     | 37     | 37     | 32     | 29     |
| Bangladesh             | n/a    | n/a    | 46     | 45     | 43     | 41     | 40     | 28     |
| Others                 | n/a    | n/a    | 886    | 784    | 774    | 683    | 676    | 674    |
| World                  | n/a    | n/a    | 7,959  | 7,175  | 7,537  | 7,339  | 7,154  | 8,427  |

Sources: World Bureau of Metal Statistics and Thomson Reuters.

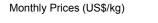
Notes: n/a implies data not available. Fabrication: jewelry and silverware including the use of scrap.

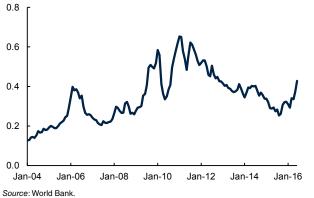


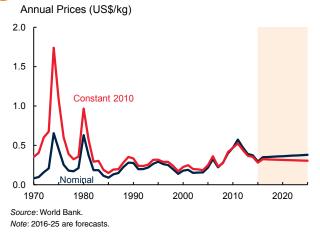


Note: 2016-25 are forecasts.

Source: World Bank


Note: Last observation is June 2016


1970/71 1980/81 1990/91 2000/01 2010/11 2013/14 2014/15 2015/16 2016/17 Production (million metric tons) United States 30.7 48.9 52.4 75.1 90.7 91.4 106.9 106.9 105.6 Brazil 0.0 15.2 15.8 39.5 75.3 86.7 97.2 96.5 103.0 0.0 49.0 56.5 Argentina 3.5 11.5 27.8 53.4 61.4 57.0 China 8.7 7.9 11.0 15.4 15.1 12.0 12.2 11.6 12.2 India 0.0 0.4 5.3 10.1 8.7 7.0 2.6 9.5 11.7 0.1 0.6 8.2 8.8 Paraguay 1.3 3.5 7.1 8.1 9.0 0.3 0.7 2.7 4.4 5.4 6.0 6.2 6.3 Canada 1.3 Ukraine n/a n/a 0.1 0.1 1.7 2.8 3.9 3.9 4.3 0.0 0.0 2.3 2.4 2.7 3.1 Bolivia 0.4 1.2 3.1 0.0 0.0 0.0 3.3 2.0 3.0 0.0 1.9 3.3 Uruguay 2.4 3.5 7.9 6.7 7.5 9.8 10.8 Others 5.4 9.4 World 42.1 80.9 104.3 175.8 264.3 282.5 319.7 312.4 326.0 Crushings (million metric tons) China 1.5 1.5 3.9 18.9 55.0 68.9 74.5 81.8 87.0 United States 20.7 27.8 32.3 44.6 44.9 47.2 51.0 51.4 52.4 7.0 37.6 36.2 40.0 45.7 44.3 Argentina 0.0 0.9 17.3 36.3 40.7 Brazil 0.0 13.8 14.2 22.7 36.9 40.4 40.5 7.3 14.1 13.0 16.8 12.2 13.4 13.6 13.8 13.3 European Union India 0.0 0.4 2.4 4.5 9.3 8.2 6.8 5.9 9.1 3.6 4.3 0.3 1.5 1.9 4.5 4.0 4.2 4.3 Mexico 0.0 0.9 3.4 0.1 0.3 1.6 3.7 4.1 4.2 Paraguay 2.1 3.4 3.7 4.0 4.1 **Russian Federation** n/a n/a 0.4 0.4 2.5 2.7 Bolivia 0.0 0.0 03 09 18 23 27 Others 12.7 23.8 24 1 150 17.5 18.6 22.9 24.9 27.4 World 42.5 83.9 99.7 146.4 221.8 242.3 263.3 279.2 289.2 Exports (million metric tons) 30.0 59.7 Brazil 0.0 1.8 2.5 15.5 46.8 50.6 57.2 United States 11.8 19.7 15.2 27.1 41.0 44.6 50.2 48.9 52.3 Argentina 0.0 2.7 4.5 7.3 9.2 7.8 10.6 11.4 10.7 Paraguay 0.0 0.6 1.0 2.5 5.2 4.8 4.5 4.6 4.8 3.5 0.0 0.7 2.9 3.9 4.3 Canada 0.1 0.2 4.2 Others 0.5 0.7 5.2 6.8 0.4 2.1 34 6.5 5.3 World 12.3 25.3 25.4 53.8 91.7 112.7 126.2 131.6 138.3 Imports (million metric tons) 0.5 0.0 13.2 52.3 70.4 78.4 83.0 87.0 China 0.0 13.6 13.2 17.7 12.5 13.4 13.2 12.6 European Union 7.4 13.3 0.1 3.5 3.8 3.8 4.0 4.0 Mexico 1.4 1.4 4.4 Japan 3.2 4.2 4.4 4.8 2.9 2.9 3.0 3.1 3.1 Taiwan, China 0.5 2.3 2.5 2.3 2.5 2.6 2.6 1.1 2.2 Thailand 0.0 0.0 0.0 1.3 2.1 1.8 2.4 2.4 2.5 Indonesia 0.0 0.4 0.5 1.1 1.9 2.2 2.0 2.3 2.4 Others 8.8 18.7 17.1 8.3 12.0 16.3 18.2 19.9 21.9 World 20.0 39.8 38.8 53.1 89.8 113.1 123.7 130.4 136.0


Source: U.S. Department of Agriculture (July 2016 update).

Notes: The trade year is January-December of the later year of the split. For example, 1970/71 refers to calendar year 1971.

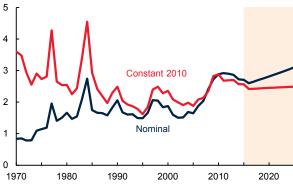
Sugar







Note: Last observation is June 2016.


|                       | 1970/71      | 1980/81 | 1990/91 | 2000/01 | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
|-----------------------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Production (million r | netric tons) |         |         |         |         |         |         |         |         |
| Brazil                | 5.1          | 8.5     | 7.9     | 17.1    | 38.4    | 37.8    | 36.0    | 34.7    | 37.1    |
| India                 | 4.5          | 6.5     | 13.7    | 20.5    | 26.6    | 26.6    | 30.5    | 27.7    | 25.5    |
| European Union        | 15.4         | 19.0    | 23.2    | 22.1    | 15.9    | 16.0    | 18.4    | 14.0    | 16.5    |
| Thailand              | 0.5          | 1.7     | 4.0     | 5.1     | 9.7     | 11.3    | 10.8    | 9.7     | 10.1    |
| China                 | 2.1          | 3.2     | 6.8     | 6.8     | 11.2    | 14.3    | 11.0    | 8.4     | 8.2     |
| United States         | 5.6          | 5.6     | 6.3     | 8.0     | 7.1     | 7.7     | 7.9     | 8.1     | 7.9     |
| Mexico                | 2.5          | 2.5     | 3.9     | 5.2     | 5.5     | 6.4     | 6.3     | 6.6     | 6.5     |
| Pakistan              | 0.0          | 0.9     | 2.1     | 2.6     | 3.9     | 5.6     | 5.2     | 5.1     | 5.4     |
| Russian Federation    | 0.0          | 0.0     | 2.6     | 1.6     | 3.0     | 4.4     | 4.4     | 5.2     | 5.3     |
| Australia             | 2.7          | 3.3     | 3.6     | 4.2     | 3.7     | 4.4     | 4.7     | 5.0     | 5.0     |
| Guatemala             | 0.2          | 0.5     | 1.0     | 1.6     | 2.0     | 2.9     | 3.0     | 3.0     | 3.1     |
| Turkey                | 0.6          | 0.9     | 1.9     | 2.8     | 2.3     | 2.3     | 2.1     | 2.0     | 2.5     |
| Others                | 46.5         | 54.8    | 60.6    | 55.3    | 33.0    | 36.5    | 37.1    | 35.5    | 36.3    |
| World                 | 85.7         | 107.6   | 137.6   | 152.9   | 162.2   | 176.1   | 177.2   | 164.9   | 169.3   |
| Stocks (million metri | ic tons)     |         |         |         |         |         |         |         |         |
| India                 | 1.8          | 1.1     | 3.6     | 12.0    | 6.3     | 8.2     | 10.6    | 9.7     | 8.0     |
| China                 | 0.3          | 0.7     | 1.4     | 1.0     | 1.6     | 8.8     | 7.3     | 4.9     | 3.2     |
| Thailand              | 0.0          | 0.2     | 0.2     | 0.6     | 3.0     | 5.3     | 5.3     | 3.6     | 2.1     |
| Pakistan              | 0.0          | 0.1     | 0.3     | 0.4     | 1.5     | 1.3     | 1.3     | 1.4     | 2.0     |
| United States         | 2.9          | 1.4     | 1.4     | 2.0     | 1.3     | 1.6     | 1.6     | 1.6     | 1.5     |
| Mexico                | 0.7          | 0.7     | 2.4     | 1.5     | 0.8     | 0.9     | 0.9     | 1.4     | 1.4     |
| Others                | 14.4         | 13.4    | 13.2    | 22.4    | 15.1    | 17.8    | 18.8    | 15.2    | 14.8    |
| World                 | 20.2         | 17.6    | 22.4    | 39.9    | 29.5    | 43.9    | 45.8    | 37.8    | 32.8    |
| Exports (million met  | ric tons)    |         |         |         |         |         |         |         |         |
| Brazil                | 1.2          | 2.3     | 1.3     | 7.7     | 25.8    | 26.2    | 24.0    | 24.4    | 26.1    |
| Thailand              | 0.2          | 1.0     | 2.7     | 3.4     | 6.6     | 7.2     | 8.3     | 8.8     | 9.0     |
| Australia             | 1.8          | 2.6     | 2.8     | 3.1     | 2.8     | 3.2     | 3.6     | 3.7     | 3.9     |
| Guatemala             | 0.1          | 0.2     | 0.7     | 1.2     | 1.5     | 2.1     | 2.3     | 2.3     | 2.3     |
| Mexico                | 0.6          | 0.0     | 0.3     | 0.2     | 1.6     | 2.7     | 1.5     | 1.2     | 1.6     |
| European Union        | 2.7          | 6.5     | 8.1     | 7.3     | 1.1     | 1.6     | 1.7     | 1.5     | 1.5     |
| Others                | 17.4         | 22.3    | 26.1    | 22.8    | 14.5    | 14.9    | 13.7    | 13.1    | 11.2    |
| World                 | 24.0         | 34.9    | 42.0    | 45.6    | 53.9    | 57.9    | 55.0    | 54.9    | 55.6    |
| Imports (million met  | ric tons)    |         |         |         |         |         |         |         |         |
| China                 | 0.4          | 1.1     | 1.1     | 1.1     | 2.1     | 4.3     | 5.1     | 6.7     | 7.9     |
| European Union        | 5.4          | 3.8     | 4.1     | 3.3     | 3.8     | 3.3     | 2.9     | 3.5     | 3.5     |
| Indonesia             | 0.1          | 0.6     | 0.2     | 1.6     | 3.1     | 3.6     | 3.1     | 3.3     | 3.4     |
| United States         | 4.8          | 4.4     | 2.6     | 1.4     | 3.4     | 3.4     | 3.2     | 2.9     | 3.2     |
| United Arab Emirates  | 0.0          | 0.1     | 0.1     | 1.1     | 2.0     | 2.1     | 2.4     | 2.5     | 2.5     |
| Bangladesh            | 0.0          | 0.0     | 0.0     | 0.8     | 1.5     | 2.1     | 2.0     | 2.4     | 2.4     |
| Korea, Rep.           | 0.0          | 0.8     | 1.2     | 1.6     | 1.7     | 1.9     | 1.9     | 1.9     | 1.9     |
| Malaysia              | 0.0          | 0.5     | 0.9     | 1.3     | 1.8     | 1.9     | 2.1     | 1.9     | 1.9     |
| Others                | 12.0         | 20.8    | 25.9    | 31.4    | 29.7    | 28.9    | 28.3    | 29.4    | 29.0    |
| World                 | 22.7         | 32.0    | 36.2    | 43.6    | 49.1    | 51.4    | 50.9    | 54.4    | 55.6    |

Source: U.S. Department of Agriculture (July 2016 update).

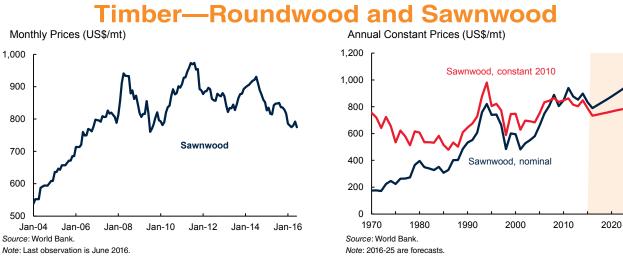
Notes: The trade year is January-December of the later year of the split. For example, 1970/71 refers to calendar year 1971.



Annual Constant Prices (US\$/kg)



Note: Last observation is June 2016.


Source: World Bank.

Note: 2016-25 are forecasts.

|                              | 2005         | 2006             | 2007  | 2008  | 2009        | 2010  | 2011  | 2012  | 2013         |
|------------------------------|--------------|------------------|-------|-------|-------------|-------|-------|-------|--------------|
| roduction (thousand          | metric tons) |                  |       |       |             |       |       |       |              |
| China                        | 933          | 1,028            | 1,166 | 1,258 | 1,344       | 1,475 | 1,623 | 1,790 | 1,92         |
| India                        | 944          | 985              | 990   | 984   | 982         | 970   | 1,120 | 1,129 | 1,20         |
| Kenya                        | 324          | 313              | 373   | 350   | 318         | 403   | 383   | 373   | 43           |
| Sri Lanka                    | 312          | 311              | 305   | 319   | 291         | 331   | 328   | 328   | 34           |
| Turkey                       | 143          | 115              | 122   | 124   | 199         | 235   | 222   | 225   | 22           |
| Vietnam                      | 133          | 149              | 162   | 162   | 177         | 192   | 202   | 200   | 18           |
| Indonesia                    | 156          | 147              | 137   | 138   | 157         | 157   | 151   | 151   | 15           |
| Japan                        | 98           | 92               | 94    | 96    | 86          | 83    | 82    | 86    | 8            |
| Argentina                    | 73           | 76               | 81    | 82    | 73          | 91    | 91    | 81    | 7            |
| Bangladesh                   | 57           | 53               | 58    | 59    | 60          | 60    | 60    | 63    | 6            |
| Uganda                       | 37           | 37               | 45    | 46    | 51          | 59    | 56    | 58    | 5            |
| Malawi                       | 47           | 45               | 48    | 42    | 53          | 52    | 47    | 43    | 4            |
| Tanzania                     | 31           | 31               | 35    | 32    | 32          | 32    | 33    | 32    | 3            |
| Iran, Islamic Rep.           | 36           | 36               | 44    | 44    | 40          | 27    | 30    | 27    | 2            |
| Rwanda                       | 16           | 17               | 21    | 20    | 21          | 22    | 24    | 25    | 2            |
| Burundi                      | 7            | 6                | 7     | 7     | 7           | 7     | 7     | 9     |              |
| Others                       | 152          | 158              | 158   | 155   | 149         | 169   | 169   | 166   | 10           |
| World                        | 3,499        | 3,600            | 3,844 | 3,915 | 4,040       | 4,365 | 4,627 | 4,785 | 5,06         |
| Consumption (thousa          |              | -                |       |       |             |       |       |       |              |
| China                        | 651          | <b>5)</b><br>745 | 889   | 967   | 1,045       | 1,189 | 1,315 | 1,482 | 1,61         |
| India                        | 753          | 772              | 786   | 803   | 822         | 818   | 922   | 939   | 1,00         |
| Turkey                       | 138          | 114              | 117   | 109   | 202         | 242   | 227   | 227   | 22           |
| Russian Federation           | 171          | 169              | 175   | 175   | 176         | 178   | 182   | 173   |              |
| United States                | 101          | 106              | 107   | 116   | 108         | 124   | 125   | 123   | 12           |
| Pakistan                     | 126          | 127              | 112   | 103   | 86          | 120   | 126   | 131   | 12           |
|                              | 150          | 139              | 140   | 138   | 124         | 124   | 122   | 122   | 11           |
| Japan<br>United Kingdom      | 130          | 136              | 133   | 133   | 121         | 120   | 129   | 125   | 11           |
| U                            | 73           | 74               | 77    | 92    | 82          | 69    | 96    | 95    |              |
| Egypt, Arab Rep.             | 60           | 63               | 76    | 91    | 86          | 90    | 80    | 80    | 8            |
| Iran, Islamic Rep.<br>Others | 1,012        | 1.028            | 1.056 | 1,053 | 1.063       | 1,108 | 1,125 | 1,129 |              |
| World                        | 3,364        | ,                | ,     | ,     | ,           | ,     | ,     | -     | 1,16<br>4,84 |
| wond                         | 3,304        | 3,474            | 3,668 | 3,779 | 3,916       | 4,180 | 4,450 | 4,627 | 4,04         |
| Exports (thousand me         |              | 070              |       |       | <b>2</b> 24 |       | 0.40  |       |              |
| Kenya                        | 292          | 272              | 302   | 329   | 281         | 362   | 348   | 350   | 41           |
| China                        | 285          | 287              | 289   | 297   | 303         | 302   | 323   | 322   | 33           |
| Sri Lanka                    | 301          | 315              | 294   | 301   | 280         | 306   | 303   | 306   | 31           |
| India                        | 207          | 219              | 179   | 203   | 181         | 183   | 205   | 199   | 20           |
| Vietnam                      | 99           | 106              | 115   | 105   | 134         | 138   | 123   | 145   | 13           |
| Indonesia                    | 99           | 95               | 84    | 96    | 92          | 87    | 76    | 70    |              |
| Uganda                       | 34           | 33               | 44    | 42    | 48          | 54    | 48    | 52    | ę            |
| Malawi                       | 44           | 42               | 47    | 40    | 47          | 49    | 45    | 42    | 4            |
| Tanzania                     | 24           | 24               | 29    | 26    | 24          | 26    | 27    | 28    | 1            |
| Rwanda                       | 12           | 13               | 20    | 20    | 19          | 22    | 23    | 23    | -            |
| Others                       | 152          | 151              | 157   | 156   | 136         | 154   | 155   | 147   | 1:           |
| World                        | 1,548        | 1,555            | 1,559 | 1,615 | 1,545       | 1,683 | 1,675 | 1,684 | 1,76         |

Sources: Food and Agriculture Organization, Intergovernmental Group on Tea.

Notes: 2005 data are average of 2004-2006.




Note: Last observation is June 2016.

|                      | 1970         | 1980        | 1990       | 2000    | 2010    | 2011    | 2012    | 2013    | 2014   |
|----------------------|--------------|-------------|------------|---------|---------|---------|---------|---------|--------|
| Industrial roundwood | d: producti  | on (million | cubic met  | ers)    |         |         |         |         |        |
| United States        | 312.7        | 327.1       | 427.2      | 420.6   | 336.1   | 354.7   | 347.1   | 354.9   | 356.8  |
| Russian Federation   | n/a          | n/a         | n/a        | 145.6   | 161.6   | 175.6   | 177.5   | 180.4   | 188.   |
| China                | 42.2         | 79.2        | 91.2       | 96.0    | 161.8   | 160.9   | 159.6   | 168.7   | 168.   |
| Canada               | 117.5        | 150.8       | 156.0      | 198.9   | 138.8   | 146.7   | 146.7   | 147.8   | 149.   |
| Brazil               | 23.9         | 61.7        | 74.3       | 103.0   | 128.4   | 140.0   | 146.8   | 144.5   | 144.   |
| Sweden               | 56.7         | 44.8        | 49.1       | 57.4    | 66.3    | 66.0    | 63.6    | 63.7    | 64.    |
| Indonesia            | 12.7         | 30.9        | 38.4       | 48.8    | 54.1    | 60.7    | 62.6    | 62.6    | 62.    |
| India                | 12.7         | 19.7        | 35.1       | 41.2    | 48.8    | 49.5    | 49.5    | 49.5    | 49.    |
| Others               | 698.2        | 731.8       | 838.1      | 572.9   | 606.2   | 614.4   | 615.1   | 627.9   | 643.   |
| World                | 1,276.4      | 1,446.0     | 1,709.2    | 1,684.4 | 1,702.1 | 1,768.6 | 1,768.5 | 1,799.9 | 1,828. |
| ndustrial roundwood  | d: imports ( | million cu  | bic meters |         |         |         |         |         |        |
| China                | 2.0          | 8.3         | 7.2        | 15.7    | 35.4    | 43.3    | 38.7    | 45.9    | 53.    |
| Germany              | 5.2          | 3.8         | 2.0        | 3.5     | 7.7     | 7.0     | 6.6     | 8.4     | 8.     |
| Sweden               | 0.6          | 3.1         | 2.0        | 11.7    | 6.3     | 6.7     | 6.9     | 7.5     | 8.     |
| India                | 0.0          | 0.0         | 1.3        | 2.2     | 5.3     | 6.3     | 6.5     | 6.5     | 7.     |
| Austria              | 2.0          | 3.7         | 4.4        | 8.5     | 8.0     | 7.4     | 7.3     | 8.2     | 7.     |
| Finland              | 2.3          | 3.8         | 5.2        | 9.9     | 6.3     | 5.7     | 5.5     | 6.7     | 6.     |
| Belgium              | n/a          | n/a         | n/a        | 4.0     | 4.2     | 4.3     | 4.3     | 4.5     | 4      |
| Japan                | 39.4         | 37.6        | 27.6       | 15.9    | 4.8     | 4.6     | 4.5     | 4.6     | 4.     |
| Others               | 31.7         | 35.2        | 32.8       | 43.8    | 32.0    | 35.4    | 32.7    | 34.7    | 36.    |
| World                | 83.1         | 95.4        | 82.6       | 115.3   | 109.9   | 120.9   | 112.9   | 127.1   | 136.   |
| Sawnwood: producti   | on (million  | cubic met   | ers)       |         |         |         |         |         |        |
| United States        | 63.7         | 65.3        | 86.1       | 91.1    | 60.0    | 63.2    | 67.5    | 71.1    | 74.    |
| China                | 14.8         | 21.2        | 23.6       | 6.7     | 37.2    | 44.6    | 55.7    | 63.0    | 68.    |
| Canada               | 19.8         | 32.8        | 39.7       | 50.5    | 38.7    | 38.9    | 40.6    | 42.8    | 43.    |
| Russian Federation   | n/a          | n/a         | n/a        | 20.0    | 28.9    | 31.2    | 32.2    | 33.5    | 33.    |
| Germany              | 11.6         | 13.0        | 14.7       | 16.3    | 22.1    | 22.6    | 21.1    | 21.5    | 21.    |
| Sweden               | 12.3         | 11.3        | 12.0       | 16.2    | 16.8    | 16.5    | 16.3    | 16.1    | 17     |
| Brazil               | 8.0          | 14.9        | 13.7       | 21.3    | 17.5    | 16.2    | 15.2    | 15.4    | 15.    |
| Finland              | 7.4          | 10.3        | 7.5        | 13.4    | 9.5     | 9.8     | 9.4     | 10.4    | 10.    |
| Others               | 251.6        | 252.1       | 265.6      | 149.4   | 146.6   | 147.4   | 148.9   | 149.0   | 152.   |
| World                | 389.1        | 420.9       | 463.0      | 384.8   | 377.1   | 390.4   | 406.9   | 422.9   | 438.   |
| Sawnwood: imports    | (million cul | bic meters  | )          |         |         |         |         |         |        |
| China                | 0.1          | 0.3         | 1.3        | 6.1     | 16.2    | 23.1    | 22.0    | 25.5    | 27.    |
| United States        | 10.6         | 17.0        | 22.5       | 34.4    | 16.6    | 16.4    | 17.4    | 20.5    | 22.    |
| Japan                | 3.0          | 5.6         | 9.0        | 10.0    | 6.4     | 6.8     | 6.6     | 7.5     | 6.     |
| United Kingdom       | 9.0          | 6.6         | 10.7       | 7.9     | 5.7     | 4.9     | 5.2     | 5.5     | 6.     |
| Egypt, Arab Rep.     | 0.4          | 1.6         | 1.6        | 2.0     | 4.8     | 4.7     | 4.5     | 4.4     | 4.     |
| Italy                | 4.0          | 5.8         | 6.0        | 8.4     | 6.1     | 6.0     | 4.9     | 4.7     | 4      |
| Germany              | 6.0          | 6.9         | 6.1        | 6.3     | 4.4     | 4.6     | 4.4     | 4.5     | 4      |
| Netherlands          | 3.1          | 3.2         | 3.5        | 3.7     | 2.8     | 2.7     | 2.6     | 2.5     | 2      |
| Others               | 16.5         | 24.6        | 23.8       | 36.9    | 45.1    | 47.5    | 46.1    | 47.5    | 48.    |
| World                | 52.6         | 71.5        | 84.5       | 115.6   | 108.0   | 116.8   | 113.5   | 122.5   | 127.   |

Source: Food and Agriculture Organization.

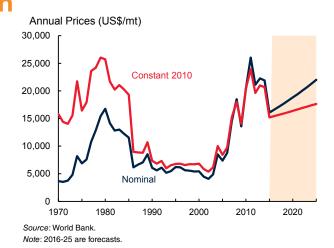
Notes: n/a implies data not available. Roundwood (which refers to Industrial roundwood), reported in cubic meters solid volume underbark (i.e. exclusing bark), is an aggregate comprising sawlogs and veneer logs; pulpwood, round and split; and other industrial roundwood except wood fuel. Sawnwood, reported in cubic meters solid volume, includes wood that has been produced from both domestic and imported roundwood, either by sawing lengthways or by a profile-chipping process and that exceeds 6mm in thickness.

### Timber—Wood panels and Woodpulp





Jan-04 Jan-06 Jan-08 Jan-10 Jan-12 Jan-14 Ja Source: World Bank.

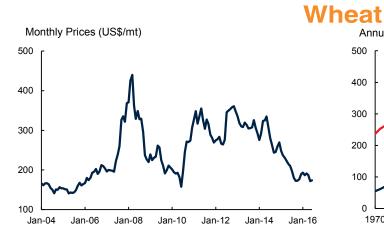

Note: Last observation is June 2016.

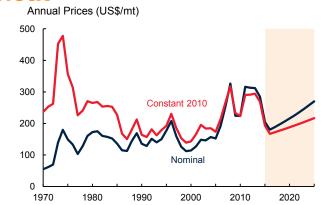
|                     | 1970          | 1980         | 1990        | 2000  | 2010  | 2011  | 2012  | 2013  | 2014  |
|---------------------|---------------|--------------|-------------|-------|-------|-------|-------|-------|-------|
| Vood-based panels:  | production    | (million cu  | ubic meters | 5)    |       |       |       |       |       |
| China               | 0.9           | 2.3          | 3.0         | 19.3  | 109.2 | 134.0 | 149.3 | 177.0 | 189.2 |
| United States       | 23.0          | 26.4         | 37.0        | 45.7  | 32.6  | 32.0  | 31.5  | 33.5  | 34.0  |
| Russian Federation  | n/a           | n/a          | n/a         | 4.8   | 10.1  | 12.1  | 12.8  | 12.7  | 13.1  |
| Canada              | 3.3           | 4.8          | 6.4         | 15.0  | 9.9   | 10.5  | 11.1  | 11.7  | 12.4  |
| Germany             | 5.8           | 8.3          | 9.6         | 14.1  | 12.6  | 12.1  | 12.1  | 12.2  | 12.2  |
| Brazil              | 0.8           | 2.5          | 2.9         | 5.8   | 9.5   | 9.4   | 10.6  | 11.2  | 11.3  |
| Turkey              | 0.2           | 0.4          | 0.8         | 2.4   | 6.6   | 7.4   | 8.1   | 8.8   | 9.6   |
| Poland              | 1.0           | 2.0          | 1.4         | 4.6   | 8.2   | 8.4   | 8.5   | 9.0   | 9.4   |
| Others              | 34.7          | 54.6         | 67.9        | 74.7  | 88.7  | 89.5  | 89.3  | 90.8  | 93.2  |
| World               | 69.8          | 101.3        | 129.0       | 186.3 | 287.5 | 315.5 | 333.3 | 366.9 | 384.5 |
| Vood-based panels:  | imports (m    | illion cubio | : meters)   |       |       |       |       |       |       |
| United States       | 2.5           | 2.1          | 4.2         | 13.9  | 8.1   | 8.2   | 9.2   | 9.2   | 10.0  |
| Germany             | 1.0           | 2.3          | 3.3         | 4.1   | 4.6   | 5.1   | 5.3   | 5.1   | 5.1   |
| Japan               | 0.6           | 0.3          | 3.8         | 6.2   | 4.2   | 5.0   | 4.8   | 5.0   | 4.9   |
| Canada              | 0.2           | 0.2          | 0.5         | 1.5   | 3.0   | 2.9   | 2.9   | 2.8   | 3.7   |
| China               | 0.1           | 0.3          | 3.2         | 6.6   | 3.0   | 3.0   | 2.9   | 3.2   | 3.6   |
| United Kingdom      | 2.0           | 2.4          | 3.3         | 3.3   | 2.7   | 2.8   | 2.6   | 3.0   | 3.3   |
| Italy               | 0.1           | 0.8          | 0.9         | 1.7   | 3.0   | 2.4   | 2.2   | 2.4   | 2.8   |
| Russian Federation  | n/a           | n/a          | n/a         | 0.4   | 1.1   | 1.4   | 2.1   | 3.0   | 2.7   |
| Others              | 3.5           | 7.1          | 11.1        | 22.1  | 38.2  | 40.2  | 40.2  | 42.0  | 41.   |
| World               | 10.0          | 15.7         | 30.3        | 59.9  | 67.9  | 71.1  | 72.2  | 75.7  | 77.7  |
| Voodpulp: productio | on (million r | netric tons  | )           |       |       |       |       |       |       |
| United States       | 37.3          | 46.2         | . 57.2      | 57.8  | 50.9  | 51.1  | 50.2  | 49.1  | 47.8  |
| Canada              | 16.6          | 19.9         | 23.0        | 26.7  | 18.9  | 18.3  | 17.8  | 18.1  | 17.7  |
| Brazil              | 0.8           | 3.4          | 4.3         | 7.3   | 14.5  | 14.3  | 14.3  | 15.5  | 16.8  |
| Sweden              | 8.1           | 8.7          | 10.2        | 11.5  | 11.9  | 11.9  | 12.0  | 11.7  | 11.5  |
| Finland             | 6.2           | 7.2          | 8.9         | 12.0  | 10.5  | 10.4  | 10.2  | 10.5  | 10.5  |
| China               | 1.2           | 1.3          | 2.1         | 3.7   | 7.5   | 8.9   | 8.8   | 9.6   | 10.4  |
| Japan               | 8.8           | 9.8          | 11.3        | 11.4  | 9.5   | 9.1   | 8.7   | 8.8   | 9.1   |
| Russian Federation  | n/a           | n/a          | n/a         | 5.8   | 7.4   | 7.9   | 7.7   | 7.2   | 7.5   |
| Others              | 22.5          | 29.1         | 37.8        | 34.9  | 39.5  | 41.8  | 41.9  | 41.1  | 40.7  |
| World               | 101.6         | 125.7        | 154.8       | 171.3 | 170.6 | 173.6 | 171.7 | 171.5 | 171.9 |
| Voodpulp: imports ( | million met   | ric tons)    |             |       |       |       |       |       |       |
| China               | 0.1           | 0.4          | 0.9         | 4.0   | 12.1  | 15.2  | 17.2  | 17.6  | 18.7  |
| United States       | 3.2           | 3.7          | 4.4         | 6.6   | 5.6   | 5.5   | 5.2   | 5.5   | 5.8   |
| Germany             | 1.8           | 2.6          | 3.7         | 4.1   | 5.1   | 5.0   | 4.8   | 5.0   | 4.8   |
| Italy               | 1.4           | 1.8          | 2.1         | 3.2   | 3.4   | 3.5   | 3.3   | 3.5   | 3.4   |
| Netherlands         | 0.6           | 0.6          | 0.6         | 0.9   | 1.2   | 1.6   | 1.6   | 2.5   | 2.5   |
| Korea, Rep.         | 0.2           | 0.5          | 1.1         | 2.1   | 2.5   | 2.5   | 2.4   | 2.4   | 2.4   |
| France              | 1.3           | 1.8          | 1.9         | 2.4   | 1.9   | 1.9   | 2.0   | 2.1   | 2.0   |
| Japan               | 0.9           | 2.2          | 2.9         | 3.1   | 1.8   | 1.9   | 1.8   | 1.7   | 1.8   |
| Others              | 7.0           | 7.0          | 7.6         | 11.4  | 14.3  | 14.6  | 15.7  | 16.6  | 17.0  |
| World               | 16.6          | 20.6         | 25.2        | 37.8  | 48.1  | 51.6  | 54.0  | 56.9  | 58.3  |

Source: Food and Agriculture Organization of the United Nations.

Notes: n/a implies data not available. Wood-based panels, reported in cubic meters solid volume, is an aggregate comprising veneer sheets, plywood, particle board and fiberboard. Woodpulp, reported in metric tons air-dry weight (i.e. with 10% moisture content), is an aggregate comprising mechanical woodpulp; semi-chemical woodpulp; chemical woodpulp; and dissolving woodpulp.







Note: Last observation is June 2016.

|                      | 1980        | 1990         | 2000  | 2005  | 2010  | 2011  | 2012  | 2013  | 2014  |
|----------------------|-------------|--------------|-------|-------|-------|-------|-------|-------|-------|
| Mine Production (the | ousand metr | ric tons)    |       |       |       |       |       |       |       |
| China                | 16.0        | 42.2         | 87.7  | 113.1 | 129.6 | 115.7 | 149.0 | 177.3 | 146.6 |
| Indonesia            | 32.5        | 39.3         | 51.6  | 120.0 | 84.0  | 90.0  | 84.0  | 69.6  | 68.4  |
| Myanmar              | 1.2         | 0.6          | 1.6   | 0.7   | 0.8   | 2.1   | 9.0   | 17.5  | 24.   |
| Bolivia              | 22.5        | 17.3         | 12.5  | 18.6  | 20.2  | 19.7  | 19.3  | 19.8  | 20.2  |
| Peru                 | 1.1         | 4.8          | 36.4  | 42.5  | 33.8  | 26.1  | 23.7  | 23.1  | 19.   |
| Brazil               | 6.9         | 39.1         | 14.2  | 11.7  | 10.4  | 13.7  | 13.8  | 13.8  | 13.   |
| Australia            | 11.6        | 7.4          | 9.1   | 2.7   | 18.6  | 6.2   | 6.5   | 7.2   | 7.    |
| Malaysia             | 61.4        | 28.5         | 6.3   | 2.9   | 2.7   | 3.7   | 3.7   | 3.8   | 3.    |
| Vietnam              | 0.4         | 0.8          | 1.8   | 5.4   | 5.4   | 5.4   | 5.4   | 5.4   | 3.    |
| Congo, Dem. Rep.     | 3.2         | 1.6          | 0.0   | 7.6   | 7.4   | 2.5   | 5.2   | 4.1   | 3.    |
| Nigeria              | 2.5         | 0.3          | 2.0   | 0.9   | 1.3   | 2.4   | 2.6   | 2.5   | 2.    |
| Rwanda               | 1.5         | 0.7          | 0.4   | 3.3   | 2.9   | 3.5   | 3.6   | 4.2   | 2.    |
| Lao PDR              | 0.6         | 0.3          | 0.4   | 0.6   | 0.4   | 0.6   | 0.5   | 0.8   | 0.    |
| Others               | 69.7        | 41.6         | 10.4  | 3.1   | 0.6   | 0.5   | 0.6   | 0.5   | 0.    |
| World                | 231.1       | 224.5        | 234.5 | 333.1 | 318.1 | 292.0 | 326.9 | 349.6 | 315.  |
| Refined Production ( | (thousand m | etric tons)  | 1     |       |       |       |       |       |       |
| China                | 15.0        | 35.8         | 109.9 | 112.2 | 149.0 | 147.9 | 159.6 | 186.9 | 166.  |
| Indonesia            | 30.5        | 38.0         | 46.4  | 78.0  | 64.2  | 79.8  | 63.0  | 64.8  | 67.   |
| Malaysia             | 71.3        | 49.0         | 26.2  | 39.2  | 38.7  | 37.8  | 32.7  | 36.7  | 31.   |
| Peru                 | 0.0         | 0.0          | 17.4  | 38.3  | 36.4  | 24.8  | 24.2  | 24.5  | 20.   |
| Bolivia              | 17.5        | 13.1         | 9.4   | 15.6  | 15.0  | 14.3  | 14.9  | 15.4  | 15.   |
| Brazil               | 8.8         | 37.6         | 13.8  | 9.0   | 9.1   | 12.0  | 12.0  | 12.0  | 12.   |
| Thailand             | 34.8        | 15.5         | 17.2  | 29.4  | 23.5  | 22.8  | 23.0  | 16.3  | 10.   |
| Belgium              | 3.1         | 6.1          | 8.5   | 7.7   | 9.9   | 11.4  | 10.3  | 9.7   | 8.    |
| Vietnam              | 0.0         | 1.8          | 1.8   | 1.8   | 3.0   | 4.8   | 5.5   | 5.5   | 5.    |
| India                | 0.1         | 0.3          | 3.6   | 3.6   | 3.6   | 3.6   | 3.8   | 4.2   | 4.    |
| Poland               | 0.0         | 0.0          | 0.0   | 0.0   | 0.6   | 1.4   | 1.9   | 2.3   | 2.    |
| Japan                | 1.3         | 0.8          | 0.6   | 0.8   | 0.8   | 1.1   | 1.8   | 1.7   | 1.    |
| Nigeria              | 2.7         | 0.3          | 0.1   | 0.6   | 0.6   | 0.6   | 0.6   | 0.6   | 0.    |
| Others               | n/a         | n/a          | 7.4   | 4.4   | 2.0   | 1.8   | 0.5   | 0.1   | 0.    |
| World                | 244.6       | 248.0        | 262.3 | 340.5 | 356.6 | 364.0 | 353.7 | 380.8 | 346.  |
| Refined Consumptio   | n (thousand | I metric tor | ns)   |       |       |       |       |       |       |
| China                | 12.5        | 25.5         | 49.1  | 108.7 | 154.3 | 176.2 | 169.3 | 192.6 | 176.  |
| United States        | 46.5        | 36.8         | 51.0  | 42.3  | 32.0  | 30.7  | 29.2  | 28.8  | 31.   |
| Japan                | 30.9        | 34.8         | 25.2  | 33.2  | 35.7  | 27.7  | 28.3  | 27.1  | 26.   |
| Germany              | 19.0        | 21.7         | 20.7  | 19.1  | 17.4  | 17.6  | 18.0  | 18.8  | 17.   |
| Korea, Rep.          | 1.8         | 7.8          | 15.3  | 17.9  | 17.4  | 16.2  | 14.5  | 13.8  | 13.   |
| India                | 2.3         | 2.3          | 6.4   | 8.4   | 10.7  | 10.0  | 10.4  | 11.9  | 12    |
| Vietnam              | 0.0         | 0.0          | 0.8   | 1.2   | 2.0   | 2.0   | 3.6   | 5.5   | 6     |
| Netherlands          | 5.0         | 6.9          | 3.6   | 3.5   | 5.4   | 4.5   | 7.4   | 7.2   | 6     |
| Spain                | 4.6         | 4.0          | 4.1   | 7.0   | 6.1   | 2.9   | 4.7   | 6.4   | 5.    |
| Others               | 100.3       | 97.8         | 100.6 | 97.4  | 87.7  | 70.0  | 69.7  | 66.8  | 67.   |
| World                | 222.9       | 237.6        | 276.9 | 338.6 | 368.8 | 357.8 | 355.1 | 378.8 | 363.  |

Source: World Bureau of Metal Statistics.

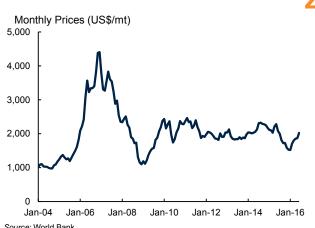
Notes: n/a implies data not available. Refined production and consumption include significant recyled material.

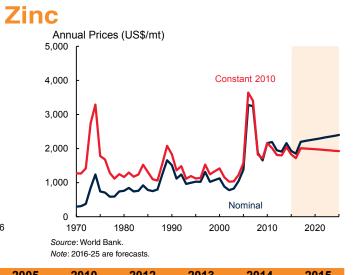




Source: World Bank.

Note: Last observation is June 2016.


|                     | 1970/71    | 1980/81 | 1990/91 | 2000/01 | 2010/11 | 2013/14 | 2014/15 | 2015/16 | 2016/17 |
|---------------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Production (million | metric ton | s)      |         |         |         |         |         |         |         |
| European Union      | 62.5       | 93.3    | 125.0   | 132.7   | 136.7   | 144.6   | 156.8   | 160.0   | 156.5   |
| China               | 29.2       | 55.2    | 98.2    | 99.6    | 115.2   | 121.9   | 126.2   | 130.2   | 130.0   |
| India               | 20.1       | 31.8    | 49.9    | 76.4    | 80.8    | 93.5    | 95.9    | 86.5    | 88.0    |
| Russian Federation  | n/a        | n/a     | 49.6    | 34.5    | 41.5    | 52.1    | 59.1    | 61.0    | 65.0    |
| United States       | 36.8       | 64.8    | 74.3    | 60.6    | 58.9    | 58.1    | 55.1    | 55.8    | 61.5    |
| Canada              | 9.0        | 19.3    | 32.1    | 26.5    | 23.3    | 37.5    | 29.4    | 27.6    | 29.0    |
| Australia           | 7.9        | 10.9    | 15.1    | 22.1    | 27.4    | 25.3    | 23.9    | 24.5    | 25.5    |
| Pakistan            | 7.3        | 10.9    | 14.4    | 21.1    | 23.3    | 24.2    | 26.0    | 25.1    | 25.3    |
| Ukraine             | n/a        | n/a     | 30.4    | 10.2    | 16.8    | 22.3    | 24.8    | 27.3    | 25.0    |
| Turkey              | 8.0        | 13.0    | 16.0    | 18.0    | 17.0    | 18.8    | 15.3    | 19.5    | 17.5    |
| Iran, Islamic Rep.  | 3.8        | 5.9     | 8.0     | 8.1     | 13.5    | 14.5    | 13.0    | 15.0    | 15.5    |
| Argentina           | 4.9        | 7.8     | 11.0    | 16.3    | 17.2    | 10.5    | 14.0    | 11.3    | 15.0    |
| Kazakhstan          | n/a        | n/a     | 16.2    | 9.1     | 9.6     | 13.9    | 13.0    | 13.7    | 13.0    |
| Egypt, Arab Rep.    | 1.5        | 1.8     | 4.3     | 6.4     | 7.2     | 8.3     | 8.3     | 8.1     | 8.1     |
| Others              | 178.0      | 214.5   | 169.4   | 41.7    | 60.9    | 69.5    | 67.1    | 68.9    | 63.6    |
| World               | 369.1      | 529.2   | 713.8   | 583.3   | 649.3   | 715.0   | 727.9   | 734.6   | 738.5   |
| Stocks (million met | ric tons)  |         |         |         |         |         |         |         |         |
| China               | 7.2        | 31.7    | 49.9    | 91.9    | 59.1    | 65.3    | 76.1    | 96.8    | 112.5   |
| United States       | 22.4       | 26.9    | 23.6    | 23.8    | 23.5    | 16.1    | 20.5    | 26.7    | 30.1    |
| European Union      | 8.6        | 13.0    | 22.5    | 17.9    | 11.9    | 9.9     | 13.8    | 18.7    | 17.4    |
| India               | 5.0        | 4.0     | 5.8     | 21.5    | 15.4    | 17.8    | 17.2    | 14.5    | 11.0    |
| Russian Federation  | n/a        | n/a     | 16.4    | 1.5     | 13.7    | 5.2     | 6.3     | 6.1     | 8.6     |
| Australia           | 3.7        | 2.0     | 2.8     | 5.5     | 8.2     | 4.6     | 4.8     | 5.9     | 6.6     |
| Others              | 42.3       | 48.0    | 72.6    | 44.4    | 66.9    | 75.3    | 78.7    | 75.8    | 67.5    |
| World               | 89.1       | 125.6   | 193.7   | 206.5   | 198.7   | 194.2   | 217.4   | 244.5   | 253.7   |
| Exports (million me | tric tons) |         |         |         |         |         |         |         |         |
| European Union      | 6.7        | 17.5    | 23.8    | 15.7    | 23.1    | 32.0    | 35.4    | 33.0    | 34.0    |
| Russian Federation  | n/a        | n/a     | 1.2     | 0.7     | 4.0     | 18.6    | 22.8    | 25.0    | 25.5    |
| United States       | 20.2       | 41.2    | 29.1    | 28.9    | 35.1    | 32.0    | 23.2    | 21.1    | 25.2    |
| Canada              | 11.8       | 16.3    | 21.7    | 17.3    | 16.6    | 23.3    | 24.2    | 22.0    | 20.5    |
| Australia           | 9.1        | 9.6     | 11.8    | 15.9    | 18.6    | 18.6    | 16.6    | 16.4    | 17.5    |
| Ukraine             | n/a        | n/a     | 2.0     | 0.1     | 4.3     | 9.8     | 11.3    | 17.0    | 12.5    |
| Others              | 15.3       | 23.1    | 38.0    | 22.6    | 31.0    | 31.6    | 30.7    | 34.7    | 33.3    |
| World               | 63.2       | 107.6   | 127.7   | 101.3   | 132.7   | 165.9   | 164.1   | 169.2   | 168.4   |
| Imports (million me | tric tons) |         |         |         |         |         |         |         |         |
| Egypt, Arab Rep.    | 2.8        | 5.4     | 5.7     | 6.1     | 10.6    | 10.2    | 11.1    | 11.5    | 12.0    |
| Indonesia           | 0.5        | 1.2     | 2.0     | 4.1     | 6.6     | 7.4     | 7.5     | 9.6     | 9.1     |
| Algeria             | 0.6        | 2.3     | 4.4     | 5.6     | 6.5     | 7.5     | 7.3     | 8.1     | 8.0     |
| Brazil              | 1.7        | 3.9     | 4.4     | 7.2     | 6.7     | 7.1     | 5.4     | 6.0     | 6.0     |
| Japan               | 4.8        | 5.8     | 5.6     | 5.9     | 5.9     | 6.1     | 5.9     | 5.7     | 5.8     |
| European Union      | 19.6       | 10.4    | 3.7     | 3.5     | 4.6     | 4.0     | 6.0     | 6.7     | 5.5     |
| Others              | 45.3       | 70.8    | 76.9    | 67.0    | 91.1    | 116.2   | 115.8   | 119.6   | 117.8   |
| World               | 75.4       | 99.9    | 102.7   | 99.3    | 132.0   | 158.4   | 158.8   | 167.2   | 164.2   |


Source: World Bank.

Note: 2016-25 are forecasts.

Source: U.S. Department of Agriculture (July 2016 update).

Notes: n/a implies data not available. The trade year is January-December of the later year of the split. For example, 1970/71 refers to calendar year 1971.





*Source*: World Bank. *Note*: Last observation is June 2016.

|                      | 1980       | 1990        | 2000         | 2005       | 2010       | 2012       | 2013       | 2014       | 2015       |
|----------------------|------------|-------------|--------------|------------|------------|------------|------------|------------|------------|
| Mine Production (the | ousand me  | etric tons) |              |            |            |            |            |            |            |
| China                | 150        | 763         | 1,780        | 2,061      | 3,842      | 4,859      | 5,188      | 5,200      | 4,750      |
| Australia            | 495        | 940         | 1,420        | 1,367      | 1,480      | 1,507      | 1,523      | 1,560      | 1,691      |
| Peru                 | 488        | 584         | 910          | 1,202      | 1,470      | 1,281      | 1,351      | 1,319      | 1,422      |
| India                | 32         | 70          | 208          | 447        | 740        | 725        | 817        | 729        | 826        |
| United States        | 349        | 571         | 829          | 748        | 748        | 738        | 784        | 832        | 810        |
| Mexico               | 243        | 307         | 401          | 476        | 570        | 660        | 643        | 660        | 677        |
| Bolivia              | 50         | 108         | 149          | 160        | 411        | 390        | 407        | 449        | 480        |
| Kazakhstan           | n/a        | n/a         | 322          | 364        | 405        | 371        | 417        | 386        | 384        |
| Canada               | 1,059      | 1,203       | 1,002        | 667        | 649        | 612        | 426        | 353        | 278        |
| Sweden               | 167        | 160         | 177          | 216        | 199        | 188        | 177        | 222        | 247        |
| Ireland              | 229        | 167         | 263          | 429        | 354        | 338        | 327        | 283        | 236        |
| Russian Federation   | n/a        | n/a         | 132          | 186        | 214        | 189        | 193        | 217        | 236        |
| Brazil               | 70         | 110         | 100          | 168        | 211        | 164        | 152        | 193        | 193        |
| Others               | n/a        | n/a         | 1,129        | 1,079      | 1,163      | 1,253      | 1,251      | 1,306      | 1,142      |
| World                | 6,172      | 7,176       | 8,823        | 9,569      | 12,457     | 13,274     | 13,655     | 13,708     | 13,372     |
| Refined Production ( | thousand   | metric ton  | s)           |            |            |            |            |            |            |
| China                | 155        | 552         | 1,957        | 2,725      | 5,209      | 4,881      | 5,280      | 5,827      | 6,155      |
| Korea, Rep.          | 76         | 248         | 473          | 650        | 750        | 877        | 895        | 915        | 978        |
| India                | 44         | 79          | 176          | 266        | 701        | 691        | 773        | 700        | 817        |
| Canada               | 592        | 592         | 780          | 724        | 690        | 649        | 652        | 648        | 678        |
| Japan                | 735        | 688         | 654          | 638        | 574        | 571        | 587        | 583        | 567        |
| Spain                | 152        | 253         | 386          | 501        | 517        | 528        | 529        | 529        | 529        |
| Australia            | 301        | 309         | 489          | 457        | 498        | 496        | 492        | 482        | 479        |
| Peru                 | 64         | 118         | 200          | 166        | 223        | 319        | 346        | 336        | 335        |
| Kazakhstan           | n/a        | n/a         | 263          | 357        | 319        | 320        | 320        | 325        | 324        |
| Mexico               | 145        | 199         | 337          | 334        | 322        | 324        | 323        | 321        | 318        |
| Finland              | 147        | 175         | 223          | 282        | 307        | 315        | 312        | 302        | 306        |
| Netherlands          | 170        | 208         | 217          | 225        | 264        | 257        | 275        | 290        | 291        |
| Russian Federation   | n/a        | n/a         | 241          | 206        | 260        | 247        | 262        | 265        | 267        |
| Others               | n/a        | n/a         | 2,757        | 2,587      | 2,275      | 2.086      | 2,012      | 2,030      | 1,930      |
| World                | 6,159      | 6,698       | 9,153        | 10,119     | 12,909     | 12,561     | 13,058     | 13,553     | 13,975     |
| Refined Consumptio   | n (thousa  |             | one)         |            |            |            |            |            |            |
| China                | 200        | 369         | 1,402        | 3,040      | 5,350      | 5,396      | 5,962      | 6,420      | 6,487      |
| United States        | 810        | 992         | -            | 1,080      | 907        | 892        | 935        | 962        | 924        |
|                      | 68         | 230         | 1,315<br>419 | 448        | 907<br>540 | 553        | 935<br>578 | 902<br>644 | 633        |
| Korea, Rep.<br>India |            |             | 224          |            |            |            |            |            | 612        |
|                      | 95         | 135         |              | 389        | 538        | 561<br>474 | 640        | 638        |            |
| Germany              | 474<br>752 | 530<br>814  | 532<br>674   | 514<br>602 | 494<br>516 | 474        | 479<br>498 | 477<br>503 | 479<br>457 |
| Japan                | 152        | 178         | 674<br>394   |            |            | 479<br>239 |            |            | 457        |
| Belgium              |            |             |              | 256        | 321        |            | 222        | 388        |            |
| Australia            | 100        | 114         | 193          | 239        | 225        | 104        | 180        | 174        | 289        |
| Russian Federation   | n/a        | n/a         | 138          | 166        | 203        | 222        | 265        | 242        | 255        |
| Others               | n/a        | n/a         | 3,599        | 3,662      | 3,432      | 3,139      | 3,195      | 3,314      | 3,334      |
| World                | 6,131      | 6,568       | 8,889        | 10,396     | 12,526     | 12,059     | 12,954     | 13,762     | 13,911     |

Source: World Bureau of Metal Statistics.

Note: n/a implies data not available.





Description of price series Technical notes

#### **Description of Price Series**

#### ENERGY

**Coal** (Australia). Thermal, f.o.b. piers, Newcastle/ Port Kembla, 6,700 kcal/kg, 90 days forward delivery.

**Coal** (Colombia). Thermal, f.o.b. Bolivar, 6,450 kcal/kg, (11,200 btu/lb), less than .8% sulfur, 9% ash, 90 days forward delivery.

**Coal** (South Africa). Thermal, f.o.b. Richards Bay, 6,000 kcal/kg, 90 days forward delivery.

**Crude oil**. Average price of Brent (38° API), Dubai Fateh (32° API), and West Texas Intermediate (WTI, 40° API). Equally weighed.

**Natural Gas Index** (Laspeyres). Weights based on five-year consumption volumes for Europe, U.S. and Japan (LNG), updated every five years.

**Natural gas** (Europe). Average import border price with a component of spot price, including U.K.

**Natural gas** (U.S.). Spot price at Henry Hub, Louisiana.

**Natural gas** (Japan). LNG, import price, cif; recent two months' averages are estimates.

#### **NON-ENERGY**

#### Beverages

**Cocoa** (ICCO). International Cocoa Organization daily price, average of the first three positions on the terminal markets of New York and London, nearest three future trading months.

**Coffee** (ICO). International Coffee Organization indicator price, other mild Arabicas, average New York and Bremen/Hamburg markets, ex-dock.

**Coffee** (ICO). International Coffee Organization indicator price, Robustas, average New York and Le Havre/Marseilles markets, ex-dock.

**Tea**. Average three auctions, average of quotations at Kolkata, Colombo, and Mombasa/Nairobi.

**Tea** (Colombo). Sri Lankan origin, all tea, average of weekly quotes.

**Tea** (Kolkata). leaf, include excise duty, average of weekly quotes.

**Tea** (Mombasa/Nairobi). African origin, all tea, average of weekly quotes.

#### Oils and meals

**Coconut oil** (Philippines/Indonesia). Bulk, c.i.f. Rotterdam.

**Copra** (Philippines/Indonesia). Bulk, c.i.f. N.W. Europe.

**Groundnuts** (U.S.). Runners 40/50, shelled basis, c.i.f. Rotterdam.

Groundnut oil (any origin). C.i.f. Rotterdam.

**Fishmeal** (any origin). 64-65%, c&f Bremen, estimates based on wholesale price.

Palm oil (Malaysia). 5% bulk, c.i.f. N. W. Europe.

Palmkernel Oil (Malaysia). C.i.f. Rotterdam.

**Soybean meal** (any origin), Argentine 45/46% extraction, c.i.f. Rotterdam.

**Soybean oil** (any origin). Crude, f.o.b. ex-mill Netherlands.

Soybeans (U.S.). C.i.f. Rotterdam.

#### Grains

**Barley** (U.S.). Feed, No. 2, spot, 20 days to-arrive, delivered Minneapolis.

Maize (U.S.). No. 2, yellow, f.o.b. US Gulf ports.

**Rice** (Thailand). 5% broken, white rice (WR), milled, indicative price based on weekly surveys of export transactions, government standard, f.o.b. Bangkok.

**Rice** (Thailand). 25% broken, WR, milled indicative survey price, government standard, f.o.b. Bangkok.

**Rice** (Thailand). 100% broken, A.1 Super, indicative survey price, government standard, f.o.b. Bangkok.

**Rice** (Vietnam). 5% broken, WR, milled, weekly indicative survey price, minimum export price, f.o.b. Hanoi.

Sorghum (U.S.). No. 2 milo yellow, f.o.b. Gulf ports.

**Wheat** (U.S.). No. 1, hard red winter (HRW), ordinary protein, export price delivered at the US Gulf port for prompt or 30 days shipment.

**Wheat** (U.S.). No. 2, soft red winter (SRW), export price delivered at the U.S. Gulf port for prompt or 30 days shipment.

#### Other food

**Bananas** (Central and South America). Major brands, free on truck (f.o.t.) Southern Europe, including duties.

**Bananas** (Central and South America). Major brands, US import price, f.o.t. US Gulf ports.

**Meat, beef** (Australia/New Zealand). Chucks and cow forequarters, frozen boneless, 85% chemical lean, c.i.f. U.S. port (east coast), ex-dock.

**Meat, chicken** (U.S.). Broiler/fryer, whole birds, 2-1/2 to 3 pounds, USDA grade "A", ice-packed, Georgia Dock preliminary weighted average, wholesale.

**Meat, sheep** (New Zealand). Frozen whole carcasses Prime Medium (PM) wholesale, Smithfield, London. **Oranges** (Mediterranean exporters). Navel, EEC indicative import price, c.i.f. Paris.

**Shrimp** (Mexico). West coast, frozen, white, No. 1, shell-on, headless, 26 to 30 count per pound, wholesale price at New York.

**Sugar** (EU). European Union negotiated import price for raw unpackaged sugar from African, Caribbean, and Pacific (ACP), c.i.f. European ports.

Sugar (U.S.). Nearby futures contract, c.i.f.

**Sugar** (world). International Sugar Agreement (ISA) daily price, raw, f.o.b. and stowed at greater Caribbean ports.

#### Timber

**Logs** (West Africa). Sapele, high quality (loyal and marchand), 80 centimeter or more, f.o.b. Douala, Cameroon.

**Logs** (Southeast Asia). Meranti, Sarawak, Malaysia, sale price charged by importers, Tokyo.

**Plywood** (Africa and Southeast Asia). Lauan, 3-ply, extra, 91 cm x 182 cm x 4 mm, wholesale price, spot Tokyo.

**Sawnwood** (West Africa). Sapele, width 6 inches or more, length 6 feet or more, f.a.s. Cameroonian ports.

**Sawnwood** (Southeast Asia). Malaysian dark red seraya/meranti, select and better quality, average 7 to 8 inches; length average 12 to 14 inches; thickness 1 to 2 inches; kiln dry, c. & f. UK ports, with 5% agents commission including premium for products of certified sustainable forest.

**Woodpulp** (Sweden). Softwood, sulphate, bleached, air-dry weight, c.i.f. North Sea ports.

#### Other raw materials

**Cotton** (Cotton Outlook "CotlookA index"). Middling 1-3/32 inch, traded in Far East, C/F.

**Rubber** (Asia). RSS3 grade, Singapore Commodity Exchange Ltd (SICOM) nearby contract.

**Rubber** (Asia). TSR 20, Technically Specified Rubber, SICOM nearby contract.

#### Fertilizers

**DAP** (diammonium phosphate). Standard size, bulk, spot, f.o.b. US Gulf.

**Phosphate rock** (Morocco). 70% BPL, contract, f.a.s. Casablanca.

**Potassium chloride** (muriate of potash). Standard grade, spot, f.o.b. Vancouver.

**TSP** (triple superphosphate). Bulk, spot, granular, f.o.b. Tunisia.

**Urea** (Black Sea). Bulk, spot, f.o.b. Black Sea (primarily Yuzhnyy).

#### Metals and minerals

**Aluminum** (LME). London Metal Exchange, unalloyed primary ingots, standard high grade, physical settlement.

**Copper** (LME). Standard grade A, cathodes and wire bar shapes, physical settlement.

**Iron ore** (any origin). Fines, spot price, c.f.r. China, 62% Fe.

**Lead** (LME). Refined, standard high grade, physical settlement.

**Nickel** (LME). Cathodes, standard high grade, physical settlement.

Tin (LME). Refined, standard high grade, physical settlement.

**Zinc** (LME). Refined, standard special high grade, physical settlement.

#### PRECIOUS METALS

**Gold** (U.K.). 99.5% fine, London afternoon fixing, average of daily rates.

**Platinum** (U.K.). 99.9% refined, London afternoon fixing.

Silver (U.K.). 99.9% refined, London afternoon fixing.

#### **Technical Notes**

#### Definitions and explanations

**Constant prices** are prices which are deflated by the Manufacturers Unit Value Index (MUV).

**MUV** is the unit value index in U.S. dollar terms of manufactures exported from fifteen countries: Brazil, Canada, China, Germany, France, India, Italy, Japan, Mexico, Republic of Korea, South Africa, Spain, Thailand, United Kingdom, and United States.

**Price indexes** were computed by the Laspeyres formula. The Non-Energy Price Index is comprised of 34 commodities. U.S. dollar prices of each commodity is weighted by 2002-2004 average export values. Base year reference for all indexes is 2010. Countries included in indexes are all low- and middle-income, according to World Bank income classifications.

**Price index weights**. Trade data as of May 2008 comes from United Nations' Comtrade Database via the World Bank WITS system, Food and Agriculture Organization FAOSTAT Database, International Energy Agency Database, BP Statistical Review, World Metal Statistics, World Bureau of Metal Statistics, and World Bank staff estimates. The weights can be found in the table on the next page.

**Reporting period**. Calendar vs. crop or marketing year refers to the span of the year. It is common in many agricultural commodities to refer to production and other variables over a twelve-month period that begins with harvest. A crop or marketing year will often differ by commodity and, in some cases, by country or region.

#### Abbreviations

\$ = U.S. dollar bbl = barrel bcf/d = billion cubic feet per day cif = cost, insurance, freight cum = cubic meter dmt = dry metric ton f.o.b. = free on board f.o.t. = free on track kg = kilogram mb/d = million barrels per day mmbtu = million British thermal units mmt = million metric tons mt = metric ton (1,000 kilograms) toz = troy oz

#### Acronyms

| CIS  | Commonwealth of Independent States |
|------|------------------------------------|
| CPI  | consumer price index               |
| DAP  | diammonium phosphate               |
| EIA  | Energy Information Administration  |
| EMDE | emerging and developing economies  |
| FAO  | Food and Agriculture Organization  |
| FSU  | former Soviet Union                |

- GDP gross domestic product
- GTAP Global Trade Analysis Project
- ICMM International Council on Mining and Metals
- IEA International Energy Agency
- LME London Metal Exchange
- LNG liquefied natural gas
- MUV Manufacture Unit Value
- NPI nickel pig iron
- OCP Office Cherifien de Phosphate
- OECD Organization of Economic Cooperation and Development
- OLS ordinary least-squares
- OPEC Organization of Petroleum Exporting Countries
- TSP triple superphosphate
- USDA United States Department of Agriculture
- WTI West Texas Intermediate

#### Data sources

**Baker Hughes** Bloomberg **BP** Statistical Review Concensus Forecast Cotton Outlook FAO Fertilizer Week INFOFISH **INTERFEL** Fel Actualités Hebdo International Cocoa Organization (ICCO) International Coffee Organization (ICO) International Cotton Advisory Committee International Energy Agency (IEA) International Fertilizer Industry Association (IFA) International Rubber Study Group (IRSG) International Tea Committee (ITC) International Tropical Timber Organization (ITTO) International Sugar Organization (ISO) ISTA Mielke GmbH Oil World Japan Lumber Journal MinEx Consulting MLA Meat & Livestock Weekly Platts International Coal Report Singapore Commodity Exchange Sopisco News Sri Lanka Tea Board Thomson Reuters U.S. Department of Agriculture U.S. Energy Information Administration (EIA) U.S. NOAA Fisheries Service World Bureau of Metal Statistics World Gas Intelligence

### Weights for commodity price indexes

| mmodity group                       | Share of<br>energy and non-energy indexes | Share of sub-group indexes |
|-------------------------------------|-------------------------------------------|----------------------------|
| ENERGY                              | 100.0                                     | 100.0                      |
| Coal                                | 4.7                                       | 4.7                        |
| Crude Oil                           | 84.6                                      | 84.6                       |
| Natural Gas                         | 10.8                                      | 10.8                       |
| NON-ENERGY                          | 100.0                                     |                            |
| Agriculture                         | 64.9                                      |                            |
| Beverages                           | 8.4                                       | 100.0                      |
| Coffee                              | 3.8                                       | 45.7                       |
| Сосоа                               | 3.1                                       | 36.9                       |
| Теа                                 | 1.5                                       | 17.4                       |
| Food                                | 40.0                                      |                            |
| Grains                              | 11.3                                      | 100.0                      |
| Rice                                | 3.4                                       | 30.2                       |
| Wheat                               | 2.8                                       | 25.3                       |
| Maize (includes sorghum)            | 4.6                                       | 40.8                       |
| Barley                              | 0.5                                       | 3.7                        |
| Oils and Meals                      | 16.3                                      | 100.0                      |
| Soybeans                            | 4.0                                       | 24.6                       |
| Soybean Oil                         | 2.1                                       | 13.0                       |
| Soybean Meal                        | 4.3                                       | 26.3                       |
| Palm Oil                            | 4.9                                       | 30.2                       |
| Coconut Oil                         | 0.5                                       | 3.1                        |
| Groundnut Oil (includes groundnuts) | 0.5                                       | 2.8                        |
| Other Food                          | 12.4                                      | 100.0                      |
| Sugar                               | 3.9                                       | 31.5                       |
| Bananas                             | 1.9                                       | 15.7                       |
| Meat, beef                          | 2.7                                       | 22.0                       |
| Meat, chicken                       | 2.4                                       | 19.2                       |
| Oranges (includes orange junice)    | 1.4                                       | 11.6                       |
| Agricultural Raw Materials          | 16.5                                      |                            |
| Timber                              | 8.6                                       | 100.0                      |
| Logs                                | 1.9                                       | 22.1                       |
| Sawnwood                            | 6.7                                       | 77.9                       |
| Other Raw Materials                 | 7.9                                       | 100.0                      |
| Cotton                              | 1.9                                       | 24.7                       |
| Natural Rubber                      | 3.7                                       | 46.7                       |
| Tobacco                             | 2.3                                       | 28.7                       |
| Fertilizers                         | 3.6                                       | 100.0                      |
| Natural Phosphate Rock              | 0.6                                       | 16.9                       |
| Phosphate                           | 0.8                                       | 21.7                       |
| Potassium                           | 0.7                                       | 20.1                       |
| Nitogenous                          | 1.5                                       | 41.3                       |
| Metals and Minerals                 | 31.6                                      | 100.0                      |
| Aluminum                            | 8.4                                       | 26.7                       |
| Copper                              | 12.1                                      | 38.4                       |
| Iron Ore                            | 6.0                                       | 18.9                       |
| Lead                                | 0.6                                       | 1.8                        |
| Nickel                              | 2.5                                       | 8.1                        |
| Tin                                 | 0.7                                       | 2.1                        |
| Zinc PRECIOUS METALS                | 1.3<br><b>100.0</b>                       | 4.1                        |
| Gold Gold                           | 77.8                                      |                            |
| Silver                              | 18.9                                      |                            |
| Platinum                            | 3.3                                       |                            |

Notes: Index weights are based on 2002-04 developing countries' export values. Precious metals are not included in the non-energy index.

ost commodity price indexes rebounded in the second quarter of 2016, continuing their rise from January on improved market sentiment and tapering supplies. Oil prices jumped by more than a third due to supply outages and strong demand. The crude oil price forecast for 2016 is raised to \$43/bbl from \$41/bbl in April. Metals prices are projected to fall 11 percent in 2016, a larger drop than anticipated in April. Agricultural prices for 2016 have been revised slightly upwards due to weather patterns in South America, but should register a small decline from last year. An 8 percentage point upward revision for precious metal prices from April reflects safe haven demand. A *Special Focus* section finds that, given the energy-intensive nature of agriculture, high energy prices were an important driver of the post-2006 surge in agricultural prices. Over 2011-16, relatively lower energy prices are likely to account for up to one-third of the projected 32 percent decline in prices of grains and soybeans.

The World Bank's *Commodity Markets Outlook* is published quarterly, in January, April, July, and October. The report provides detailed market analysis for major commodity groups, including energy, metals, agriculture, precious metals, and fertilizers. Price forecasts to 2025 for 46 commodities are also presented, together with historical price data. Commodity price data updates are published separately at the beginning of each month.

The report and data can be accessed at: www.worldbank.org/commodities

